Nonlinear Predictive Control Using Wiener Models
Computationally Efficient Approaches for Polynomial and Neural Structures
Seiten
2022
|
1st ed. 2022
Springer International Publishing (Verlag)
978-3-030-83817-1 (ISBN)
Springer International Publishing (Verlag)
978-3-030-83817-1 (ISBN)
This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant.
A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.
A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.
Introduction to Model Predictive Control.- MPC Algorithms Using Input-Output Wiener Models.- MPC Algorithms Using State-Space Wiener Models.- Conclusions.- Index.
"The present book provides computationally efficient MPC (model predictive control) solutions as an alternative for the classical one, which has a limited structure, giving poor control quality in the case of an imperfect model and disturbances. The book is of real interest for all researchers working in control theory, optimization, engineering and economics." (Savin Treanta, zbMATH 1510.93001, 2023)
Erscheinungsdatum | 25.09.2022 |
---|---|
Reihe/Serie | Studies in Systems, Decision and Control |
Zusatzinfo | XXIII, 343 p. 167 illus., 121 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 559 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Laguerre Parameterisation • Linearization • Model Predictive Control • optimisation • Process Control • Wiener Models |
ISBN-10 | 3-030-83817-X / 303083817X |
ISBN-13 | 978-3-030-83817-1 / 9783030838171 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95