MySQL 8 for Big Data (eBook)
266 Seiten
Packt Publishing (Verlag)
978-1-78839-042-2 (ISBN)
Uncover the power of MySQL 8 for Big Data
About This Book
- Combine the powers of MySQL and Hadoop to build a solid Big Data solution for your organization
- Integrate MySQL with different NoSQL APIs and Big Data tools such as Apache Sqoop
- A comprehensive guide with practical examples on building a high performance Big Data pipeline with MySQL
Who This Book Is For
This book is intended for MySQL database administrators and Big Data professionals looking to integrate MySQL 8 and Hadoop to implement a high performance Big Data solution. Some previous experience with MySQL will be helpful, although the book will highlight the newer features introduced in MySQL 8.
What You Will Learn
- Explore the features of MySQL 8 and how they can be leveraged to handle Big Data
- Unlock the new features of MySQL 8 for managing structured and unstructured Big Data
- Integrate MySQL 8 and Hadoop for efficient data processing
- Perform aggregation using MySQL 8 for optimum data utilization
- Explore different kinds of join and union in MySQL 8 to process Big Data efficiently
- Accelerate Big Data processing with Memcached
- Integrate MySQL with the NoSQL API
- Implement replication to build highly available solutions for Big Data
In Detail
With organizations handling large amounts of data on a regular basis, MySQL has become a popular solution to handle this structured Big Data. In this book, you will see how DBAs can use MySQL 8 to handle billions of records, and load and retrieve data with performance comparable or superior to commercial DB solutions with higher costs.
Many organizations today depend on MySQL for their websites and a Big Data solution for their data archiving, storage, and analysis needs. However, integrating them can be challenging. This book will show you how to implement a successful Big Data strategy with Apache Hadoop and MySQL 8. It will cover real-time use case scenario to explain integration and achieve Big Data solutions using technologies such as Apache Hadoop, Apache Sqoop, and MySQL Applier. Also, the book includes case studies on Apache Sqoop and real-time event processing.
By the end of this book, you will know how to efficiently use MySQL 8 to manage data for your Big Data applications.
Style and approach
Step by Step guide filled with real-world practical examples.
Uncover the power of MySQL 8 for Big DataAbout This BookCombine the powers of MySQL and Hadoop to build a solid Big Data solution for your organizationIntegrate MySQL with different NoSQL APIs and Big Data tools such as Apache SqoopA comprehensive guide with practical examples on building a high performance Big Data pipeline with MySQLWho This Book Is ForThis book is intended for MySQL database administrators and Big Data professionals looking to integrate MySQL 8 and Hadoop to implement a high performance Big Data solution. Some previous experience with MySQL will be helpful, although the book will highlight the newer features introduced in MySQL 8.What You Will LearnExplore the features of MySQL 8 and how they can be leveraged to handle Big DataUnlock the new features of MySQL 8 for managing structured and unstructured Big DataIntegrate MySQL 8 and Hadoop for efficient data processingPerform aggregation using MySQL 8 for optimum data utilizationExplore different kinds of join and union in MySQL 8 to process Big Data efficientlyAccelerate Big Data processing with MemcachedIntegrate MySQL with the NoSQL APIImplement replication to build highly available solutions for Big DataIn DetailWith organizations handling large amounts of data on a regular basis, MySQL has become a popular solution to handle this structured Big Data. In this book, you will see how DBAs can use MySQL 8 to handle billions of records, and load and retrieve data with performance comparable or superior to commercial DB solutions with higher costs.Many organizations today depend on MySQL for their websites and a Big Data solution for their data archiving, storage, and analysis needs. However, integrating them can be challenging. This book will show you how to implement a successful Big Data strategy with Apache Hadoop and MySQL 8. It will cover real-time use case scenario to explain integration and achieve Big Data solutions using technologies such as Apache Hadoop, Apache Sqoop, and MySQL Applier. Also, the book includes case studies on Apache Sqoop and real-time event processing.By the end of this book, you will know how to efficiently use MySQL 8 to manage data for your Big Data applications.Style and approachStep by Step guide filled with real-world practical examples.
Erscheint lt. Verlag | 20.10.2017 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
ISBN-10 | 1-78839-042-3 / 1788390423 |
ISBN-13 | 978-1-78839-042-2 / 9781788390422 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 3,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich