Productive and Efficient Data Science with Python (eBook)
XXI, 383 Seiten
Apress (Verlag)
978-1-4842-8121-5 (ISBN)
This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.
You'll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You'll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem.
The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You'll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks.
In the end, you'll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity.What You'll Learn
- Write fast and efficient code for data science and machine learning
- Build robust and expressive data science pipelines
- Measure memory and CPU profile for machine learning methods
- Utilize the full potential of GPU for data science tasks
- Handle large and complex data sets efficiently
Who This Book Is For
Data scientists, data analysts, machine learning engineers, Artificial intelligence practitioners, statisticians who want to take full advantage of Python ecosystem.
Dr. Tirthajyoti Sarkar lives in the San Francisco Bay area works as a Data Science and Solutions Engineering Manager at Adapdix Corp., where he architects Artificial intelligence and Machine learning solutions for edge-computing based systems powering the Industry 4.0 and Smart manufacturing revolution across a wide range of industries. Before that, he spent more than a decade developing best-in-class semiconductor technologies for power electronics.
This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.You ll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You ll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem. The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You ll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks. In the end, you ll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity. What You ll Learn Write fast and efficient code for data science and machine learningBuild robust and expressive data science pipelines Measure memory and CPU profile for machine learning methods Utilize the full potential of GPU for data science tasks Handle large and complex data sets efficiently Who This Book Is For Data scientists, data analysts, machine learning engineers, Artificial intelligence practitioners, statisticians who want to take full advantage of Python ecosystem.
Erscheint lt. Verlag | 1.7.2022 |
---|---|
Zusatzinfo | XXI, 383 p. 202 illus., 37 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Informatik ► Theorie / Studium ► Algorithmen | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Data Science • Data Science Pipeline • High Performance Computing • Keras • machine learning • matplotlib • NumPy • Object Oriented Programming • Pandas • Parallel Processing • Python • scikit-learn • seaborn |
ISBN-10 | 1-4842-8121-7 / 1484281217 |
ISBN-13 | 978-1-4842-8121-5 / 9781484281215 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 19,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich