Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Guide to Data Privacy - Vicenç Torra

Guide to Data Privacy

Models, Technologies, Solutions

(Autor)

Buch | Softcover
XVI, 313 Seiten
2022 | 1st ed. 2022
Springer International Publishing (Verlag)
978-3-031-12836-3 (ISBN)
CHF 59,90 inkl. MwSt
Data privacy technologies are essential for implementing information systems with privacy by design.

Privacy technologies clearly are needed for ensuring that data does not lead to disclosure, but also that statistics or even data-driven machine learning models do not lead to disclosure.  For example, can a deep-learning model be attacked to discover that sensitive data has been used for its training?  This accessible textbook presents privacy models, computational definitions of privacy, and methods to implement them. Additionally, the book explains and gives plentiful examples of how to implement-among other models-differential privacy, k-anonymity, and secure multiparty computation.

Topics and features:

  • Provides integrated presentation of data privacy (including tools from statistical disclosure control, privacy-preserving data mining, and privacy for communications)
  • Discusses privacy requirements and tools fordifferent types of scenarios, including privacy for data, for computations, and for users
  • Offers characterization of privacy models, comparing their differences, advantages, and disadvantages
  • Describes some of the most relevant algorithms to implement privacy models
  • Includes examples of data protection mechanisms

This unique textbook/guide contains numerous examples and succinctly and comprehensively gathers the relevant information. As such, it will be eminently suitable for undergraduate and graduate students interested in data privacy, as well as professionals wanting a concise overview.

Vicenç Torra is Professor with the Department of Computing Science at Umeå University, Umeå, Sweden.

Vicenc Torra is Professor with the Department of Computing Science at Umea University, Umea, Sweden. He is the Wallenberg Chair on AI at the university, as well as a fellow of IEEE and EurAI.

1. Introduction.- 2. Basics of Cryptography and Machine Learning.- 3. Privacy Models and Privacy Mechanisms.- 4. User's Privacy.- 5. Avoiding Disclosure from Computations.- 6. Avoiding Disclosure from Data Masking Methods.- 7. Other.- 8. Conclusions.

Erscheinungsdatum
Reihe/Serie Undergraduate Topics in Computer Science
Zusatzinfo XVI, 313 p. 33 illus., 6 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 510 g
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Kryptologie
Schlagworte data privacy • machine learning • Privacy by design • privacy preserving data mining • Statistical Disclosure Control
ISBN-10 3-031-12836-2 / 3031128362
ISBN-13 978-3-031-12836-3 / 9783031128363
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Lehrbuch für Konzepte, Prinzipien, Mechanismen, Architekturen und …

von Norbert Pohlmann

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel

Buch (2024)
Carl Hanser (Verlag)
CHF 97,95

von Chaos Computer Club

Buch | Softcover (2024)
KATAPULT Verlag
CHF 39,20