Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms (eBook)

eBook Download: PDF
2022 | 1st ed. 2022
XVII, 133 Seiten
Springer International Publishing (Verlag)
978-3-030-96917-2 (ISBN)

Lese- und Medienproben

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms - Tome Eftimov, Peter Korošec
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.

The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:

Part I: Introduction to optimization, benchmarking, and statistical analysis - Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms - Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison - Chapter 8.



Tome Eftimov is currently a research fellow at the Jožef Stefan Institute, Ljubljana, Slovenia where he was awarded his PhD. He has since been a postdoctoral research fellow at the Dept. of Biomedical Data Science, and the Centre for Population Health Sciences, Stanford University, USA, and a research associate at the University of California, San Francisco, USA. His main areas of research include statistics, natural language processing, heuristic optimization, machine learning, and representational learning. His work related to benchmarking in computational intelligence is focused on developing more robust statistical approaches that can be used for the analysis of experimental data. 

Peter Korošec received his PhD degree from the Jožef Stefan Postgraduate School, Ljubljana, Slovenia. Since 2002 he has been a researcher at the Computer Systems Department of the Jožef Stefan Institute, Ljubljana. He has participated in the organization of various conferences workshops as program chair or organizer. He has successfully applied his optimization approaches to several real-world problems in engineering. Recently, he has focused on better understanding optimization algorithms so that they can be more efficiently selected and applied to real-world problems. 

The authors have presented the related tutorial at the significant related international conferences in Evolutionary Computing, including GECCO, PPSN, and SSCI.

Erscheint lt. Verlag 11.6.2022
Reihe/Serie Natural Computing Series
Natural Computing Series
Zusatzinfo XVII, 133 p. 29 illus., 25 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Schlagworte Benchmarking • DSCTool • Evolutionary Computing • Metaheuristics • Multiobjective Optimization • Optimization • Statistical Analysis • stochastic optimization
ISBN-10 3-030-96917-7 / 3030969177
ISBN-13 978-3-030-96917-2 / 9783030969172
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich