Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Learning for Security and Privacy Preservation in IoT -

Deep Learning for Security and Privacy Preservation in IoT (eBook)

Aaisha Makkar, Neeraj Kumar (Herausgeber)

eBook Download: PDF
2022 | 1st ed. 2021
XII, 179 Seiten
Springer Singapore (Verlag)
978-981-16-6186-0 (ISBN)
Systemvoraussetzungen
181,89 inkl. MwSt
(CHF 177,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book addresses the issues with privacy and security in Internet of things (IoT) networks which are susceptible to cyber-attacks and proposes deep learning-based approaches using artificial neural networks models to achieve a safer and more secured IoT environment. Due to the inadequacy of existing solutions to cover the entire IoT network security spectrum, the book utilizes artificial neural network models, which are used to classify, recognize, and model complex data including images, voice, and text, to enhance the level of security and privacy of IoT. This is applied to several IoT applications which include wireless sensor networks (WSN), meter reading transmission in smart grid, vehicular ad hoc networks (VANET), industrial IoT and connected networks. The book serves as a reference for researchers, academics, and network engineers who want to develop enhanced security and privacy features in the design of IoT systems.



Aaisha Makkar received her Bachelor of Computer Applications degree from Panjab University, Chandigarh, India, in 2010 and Master of Computer Applications from National Institute of Technology (NIT), Kurukshetra, India, in 2013. She had worked as an assistant professor in Computer Application Department of NIT, Kurukshetra. She is currently pursuing her Ph.D. degree from Computer Science and Engineering Department in Thapar Institute of Engineering and Technology, Patiala (Punjab), India. Her research interests include data mining, web mining, algorithms, machine learning, and Internet of things.

 

Prof. Neeraj Kumar (SM'17) received his Ph.D. in CSE from Shri Mata Vaishno Devi University, Katra (Jammu and Kashmir), India, in 2009, and was a postdoctoral research fellow in Coventry University, Coventry, UK. He is working as a professor in the Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology (Deemed to be University), Patiala (Pb.), India. He has published more than 400 technical research papers in top-cited journals such as IEEE TKDE, IEEE TIE, IEEE TDSC, IEEE TITS, IEEE TCE, IEEE TII, IEEE TVT, IEEE ITS, IEEE SG, IEEE Netw., IEEE Comm., IEEE WC, IEEE IoTJ, IEEE SJ, Computer Networks, Information sciences, FGCS, JNCA, JPDC, and ComCom. He has guided many research scholars leading to Ph.D. and M.E./M.Tech. His research is supported by funding from UGC, DST, CSIR, and TCS. He is an associate technical editor of IEEE Communication Magazine. He is an associate editor of IJCS, Wiley, JNCA, Elsevier, Elsevier Computer Communications, and Security and Communication, Wiley. He has been a guest editor of various International Journals of repute such as-IEEE Access, IEEE Communication Magazine, IEEE Network Magazine, Computer Networks, Elsevier, Future Generation Computer Systems, Elsevier, and Journal of Medical Systems, Springer, Computer and Electrical Engineering, Elsevier, Mobile Information Systems, International Journal of Ad hoc and Ubiquitous Computing, Telecommunication Systems, Springer, and Journal of Supercomputing, Springer. He has been a workshop chair at IEEE Globecom 2018 and IEEE ICC 2019 and TPC Chair and a member for various International conferences. He is senior member of the IEEE. He has more than 9406 citations to his credit with current h-index of 53. He has won the best papers award from IEEE Systems Journal and ICC 2018, Kansas City, in 2018. He is a visiting research fellow at Coventry University, Newcastle University, UK.


This book addresses the issues with privacy and security in Internet of things (IoT) networks which are susceptible to cyber-attacks and proposes deep learning-based approaches using artificial neural networks models to achieve a safer and more secured IoT environment. Due to the inadequacy of existing solutions to cover the entire IoT network security spectrum, the book utilizes artificial neural network models, which are used to classify, recognize, and model complex data including images, voice, and text, to enhance the level of security and privacy of IoT. This is applied to several IoT applications which include wireless sensor networks (WSN), meter reading transmission in smart grid, vehicular ad hoc networks (VANET), industrial IoT and connected networks. The book serves as a reference for researchers, academics, and network engineers who want to develop enhanced security and privacy features in the design of IoT systems.
Erscheint lt. Verlag 3.4.2022
Reihe/Serie Signals and Communication Technology
Signals and Communication Technology
Zusatzinfo XII, 179 p. 58 illus., 44 illus. in color.
Sprache englisch
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Neural Networks • Deep learning • Internet of Things (IoT) • machine learning • Mobile Ad Hoc Networks (MANETs) • Network Security • Privacy-Preserving Meter • Secure Data Aggregation • Vehicular Ad Hoc Networks (VANETs) • Wireless Sensors Network
ISBN-10 981-16-6186-3 / 9811661863
ISBN-13 978-981-16-6186-0 / 9789811661860
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Praxishandbuch zu Krisenmanagement und Krisenkommunikation

von Holger Kaschner

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 34,15
Methodische Kombination von IT-Strategie und IT-Reifegradmodell

von Markus Mangiapane; Roman P. Büchler

eBook Download (2024)
Springer Vieweg (Verlag)
CHF 41,95