Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Admissible Invariant Distributions on Reductive $p$-adic Groups (eBook)

eBook Download: PDF
2015
97 Seiten
American Mathematical Society (Verlag)
978-1-4704-2165-6 (ISBN)
Systemvoraussetzungen
38,61 inkl. MwSt
(CHF 37,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Harish-Chandra presented these lectures on admissible invariant distributions for $p$-adic groups at the Institute for Advanced Study in the early 1970s. He published a short sketch of this material as his famous "e;Queen's Notes"e;. This book, which was prepared and edited by DeBacker and Sally, presents a faithful rendering of Harish-Chandra's original lecture notes. The main purpose of Harish-Chandra's lectures was to show that the character of an irreducible admissible representation of a connected reductive $p$-adic group $G$ is represented by a locally summable function on $G$. A key ingredient in this proof is the study of the Fourier transforms of distributions on $/mathfrak g$, the Lie algebra of $G$. In particular, Harish-Chandra shows that if the support of a $G$-invariant distribution on $/mathfrak g$ is compactly generated, then its Fourier transform has an asymptotic expansion about any semisimple point of $/mathfrak g$. Harish-Chandra's remarkable theorem on the local summability of characters for $p$-adic groups was a major result in representation theory that spawned many other significant results. This book presents, for the first time in print, a complete account of Harish-Chandra's original lectures on this subject, including his extension and proof of Howe's Theorem. In addition to the original Harish-Chandra notes, DeBacker and Sally provide a nice summary of developments in this area of mathematics since the lectures were originally delivered. In particular, they discuss quantitative results related to the local character expansion.
Erscheint lt. Verlag 2.1.2015
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-2165-8 / 1470421658
ISBN-13 978-1-4704-2165-6 / 9781470421656
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich