Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Lectures on the Arthur-Selberg Trace Formula (eBook)

eBook Download: PDF
2015
99 Seiten
American Mathematical Society (Verlag)
978-1-4704-2158-8 (ISBN)
Systemvoraussetzungen
38,51 inkl. MwSt
(CHF 37,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Arthur-Selberg trace formula is an equality between two kinds of traces: the geometric terms given by the conjugacy classes of a group and the spectral terms given by the induced representations. In general, these terms require a truncation in order to converge, which leads to an equality of truncated kernels. The formulas are difficult in general and even the case of $GL$(2) is nontrivial. The book gives proof of Arthur's trace formula of the 1970s and 1980s, with special attention given to $GL$(2). The problem is that when the truncated terms converge, they are also shown to be polynomial in the truncation variable and expressed as "e;weighted"e; orbital and "e;weighted"e; characters. In some important cases the trace formula takes on a simple form over $G$. The author gives some examples of this, and also some examples of Jacquet's relative trace formula. This work offers for the first time a simultaneous treatment of a general group with the case of $GL$(2). It also treats the trace formula with the example of Jacquet's relative formula. Features: Discusses why the terms of the geometric and spectral type must be truncated, and why the resulting truncations are polynomials in the truncation of value $T$. Brings into play the significant tool of ($G, M$) families and how the theory of Paley-Weiner is applied. Explains why the truncation formula reduces to a simple formula involving only the elliptic terms on the geometric sides with the representations appearing cuspidally on the spectral side (applies to Tamagawa numbers). Outlines Jacquet's trace formula and shows how it works for $GL$(2).
Erscheint lt. Verlag 2.1.2015
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 1-4704-2158-5 / 1470421585
ISBN-13 978-1-4704-2158-8 / 9781470421588
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich