Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-37615-4 (ISBN)
About the authorLeonhard Kunczik obtained his Dr. rer. nat. in 2021 in Quantum Reinforcement Learning from the Universität der Bundeswehr München as a member of the COMTESSA research group. Now, he continues his research as a project leader at the forefront of Quantum Machine Learning and Optimization in the context of Operations Research and Cyber Security.
Motivation: Complex Attacker-Defender Scenarios - The eternal con ict., The Information Game - A special Attacker-Defender Scenario., Reinforcement Learning and Bellman's Principle of Optimality., Quantum Reinforcement Learning - Connecting Reinforcement Learning and Quantum Computing.- Approximation in Quantum Computing.- Advanced Quantum Policy Approximation in Policy Gradient Rein-forcement Learning.- Applying Quantum REINFORCE to the Information Game.- Evaluating quantum REINFORCE on IBM's Quantum Hardware.- Future Steps in Quantum Reinforcement Learning for Complex Scenarios.- Conclusion.
Erscheinungsdatum | 02.06.2022 |
---|---|
Zusatzinfo | XVIII, 134 p. 38 illus. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 208 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Schlagworte | Attacker-Defender Scenarios • Quanten Computing • Quantum machine learning • Quantum Reinforcement Learning • Reinforcement Learning |
ISBN-10 | 3-658-37615-5 / 3658376155 |
ISBN-13 | 978-3-658-37615-4 / 9783658376154 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich