Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Computational Statistics in Data Science (eBook)

eBook Download: PDF
2022 | 1. Auflage
672 Seiten
John Wiley & Sons (Verlag)
978-1-119-56105-7 (ISBN)

Lese- und Medienproben

Computational Statistics in Data Science -
Systemvoraussetzungen
192,99 inkl. MwSt
(CHF 188,55)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
An essential roadmap to the application of computational statistics in contemporary data science

In Computational Statistics in Data Science, a team of distinguished mathematicians and statisticians delivers an expert compilation of concepts, theories, techniques, and practices in computational statistics for readers who seek a single, standalone sourcebook on statistics in contemporary data science. The book contains multiple sections devoted to key, specific areas in computational statistics, offering modern and accessible presentations of up-to-date techniques.

Computational Statistics in Data Science provides complimentary access to finalized entries in the Wiley StatsRef: Statistics Reference Online compendium. Readers will also find:

* A thorough introduction to computational statistics relevant and accessible to practitioners and researchers in a variety of data-intensive areas

* Comprehensive explorations of active topics in statistics, including big data, data stream processing, quantitative visualization, and deep learning

Perfect for researchers and scholars working in any field requiring intermediate and advanced computational statistics techniques, Computational Statistics in Data Science will also earn a place in the libraries of scholars researching and developing computational data-scientific technologies and statistical graphics.

WALTER W. PIEGORSCH is Professor of Mathematics at the University of Arizona and Director of Statistical Research & Education at the University's BIO5 Institute. He is also a former Chair of the UArizona Interdisciplinary Program in Statistics, and a past editor of the Journal of the American Statistical Association (Theory & Methods Section). He is a fellow of the American Statistical Association and an elected member of the International Statistical Institute. RICHARD A. LEVINE is Professor of Statistics at San Diego State University and Faculty Advisor overseeing the Statistical Modeling Group in SDSU Analytic Studies and Institutional Research. He is former Chair of the SDSU Department of Mathematics and Statistics and past Editor of the Journal of Computational and Graphical Statistics. He is Associate Editor for Statistics of the Notices of the American Mathematical Society and is a fellow of the American Statistical Association. HAO HELEN ZHANG is Professor of Mathematics at the University of Arizona and Chair of the UArizona Interdisciplinary Program in Statistics. She is Editor-in-Chief of STAT (the ISI journal) and Associate Editor of the Journal of the American Statistical Association and the Journal of the Royal Statistical Society. She is a fellow of the American Statistical Association, the Institute of Mathematical Statistics, and an elected member of the International Statistical Institute. THOMAS C. M. LEE is Professor of Statistics and Associate Dean of the Faculty in Mathematical and Physical Sciences at the University of California, Davis. He is a former Chair of the Department of Statistics at the same institution and a past editor of the Journal of Computational and Graphical Statistics. He is an elected fellow of the American Association for the Advancement of Science, the American Statistical Association, and the Institute of Mathematical Statistics.

Erscheint lt. Verlag 17.3.2022
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Computational & Graphical Statistics • Computational Statistics • Computer Science • Computer Science Special Topics • Data Analysis • Datenanalyse • Informatik • Rechnergestützte u. graphische Statistik • Spezialthemen Informatik • Statistics • Statistik
ISBN-10 1-119-56105-1 / 1119561051
ISBN-13 978-1-119-56105-7 / 9781119561057
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 26,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich