Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Automated Deep Learning Using Neural Network Intelligence - Ivan Gridin

Automated Deep Learning Using Neural Network Intelligence

Develop and Design PyTorch and TensorFlow Models Using Python

(Autor)

Buch | Softcover
384 Seiten
2022 | 1st ed.
Apress (Verlag)
978-1-4842-8148-2 (ISBN)
CHF 97,35 inkl. MwSt
Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development.

The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI.

After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.


What You Will Learn

Know the basic concepts of optimization tuners, search space, and trials
Apply different hyper-parameter optimization algorithms to develop effective neural networks
Construct new deep learning models from scratch
Execute the automated Neural Architecture Search to create state-of-the-art deep learning models
Compress the model to eliminate unnecessary deep learning layers


Who This Book Is For 
Intermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development

Ivan Gridin is a machine learning expert from Moscow who has worked on distributive high-load systems and implemented different machine learning approaches in practice. One of the primary areas of his research is the design and analysis of predictive time series models. Ivan has fundamental math skills in probability theory, random process theory, time series analysis, machine learning, deep learning, and optimization. He has published books on genetic algorithms and time series analysis.

​Chapter 1: Introduction to Neural Network Intelligence.- Chapter 2:Hyperparameter Optimization.- Chapter 3:  Hyperparameter Optimization Under Shell.- 4. Multi-Trial Neural Architecture Search.- Chapter 5: One-Shot Neural Architecture Search.- Chapter 6: Model Pruning.- Chapter 7: NNI Recipes.

Erscheinungsdatum
Zusatzinfo 128 Illustrations, color; 31 Illustrations, black and white; XVII, 384 p. 159 illus., 128 illus. in color.
Verlagsort Berkley
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • Automated Deep Learning • Automated machine learning • Deep learning • Neural networks • Python • PyTorch • tensorflow
ISBN-10 1-4842-8148-9 / 1484281489
ISBN-13 978-1-4842-8148-2 / 9781484281482
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20