Data-Science-Crashkurs (eBook)
XVI, 330 Seiten
dpunkt (Verlag)
978-3-96910-618-1 (ISBN)
- Praxisnaher Einstieg mit anschaulichen Erklärungen und zahlreichen Anwendungsbeispielen, unterstützt durch interaktive Elemente
- Für alle, die mehr über die Möglichkeiten der Datenanalyse lernen wollen, ohne gleich tief in die Theorie oder bestimmte Methoden einzusteigen
»Data Science Crashkurs« bietet einen praxisnahen Einstieg in Data Science, angereichert mit interaktiven Elementen, der die Breite der Möglichkeiten der Datenanalyse aufzeigt. Dieses Buch geht tief genug, um Vorteile, Nachteile und Risiken zu verstehen, aber steigt dennoch nicht zu tief in die zugrunde liegende Mathematik ein.
Es wird nicht nur erklärt, wofür wichtige Begriffe wie Big Data, machinelles Lernen oder Klassifikation stehen, sondern auch anschaulich mit zahlreichen Beispielen aufgezeigt, wie Daten analysiert werden. Ein breiter Überblick über Analysemethoden vermittelt das nötige Wissen, um in eigenen Projekten geeignete Methoden auszuwählen und anzuwenden, um das gewünschte Ergebnis zu erreichen.
Der benötigte Python-Quelltext, der z.B. zur Durchführung von Analysen oder zur Erstellung von Visualisierungen verwendet wird, ist in Form von Jupyter-Notebooks frei verfügbar.
Dr. Steffen Herbold ist Professor für Methoden und Anwendungen maschinellen Lernens am Institut für Software und Systems Engineering der Technischen Universität Clausthal, wo er die Forschungsgruppe AI Engineering leitet. Zuvor hat er an der Universität Göttingen promoviert und habilitiert und am Karlsruher Institut für Technologie einen Lehrstuhl vertreten. In der Forschung beschäftigt er sich mit der Entwicklung und Qualitätssicherung der Lösung von Problemen durch maschinelles Lernen, z.B. zur effizienteren Softwareentwicklung, der Prognose von Ernteerträgen oder auch der Erkennung von aeroakustischen Geräuschquellen.
Erscheint lt. Verlag | 8.1.2022 |
---|---|
Verlagsort | Heidelberg |
Sprache | deutsch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Schlagworte | Algorithmen • Big Data • Data Mining • Data Science • Datenanalyse • Deep learning • Jupyter-Notebook • KI • machine learning • Maschinelles Lernen • Mathematik • Neuronale Netze • Python • Statistik • Wahrscheinlichkeit |
ISBN-10 | 3-96910-618-4 / 3969106184 |
ISBN-13 | 978-3-96910-618-1 / 9783969106181 |
Haben Sie eine Frage zum Produkt? |
Größe: 87,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich