Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nature-Inspired Optimization Algorithms with Java - Shashank Jain

Nature-Inspired Optimization Algorithms with Java (eBook)

A Look at Optimization Techniques

(Autor)

eBook Download: PDF
2021 | 1st ed.
XIII, 175 Seiten
Apress (Verlag)
978-1-4842-7401-9 (ISBN)
Systemvoraussetzungen
46,99 inkl. MwSt
(CHF 45,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Gain insight into the world of nature-inspired optimization techniques and algorithms. This book will prepare you to apply different nature-inspired optimization techniques to solve problems using Java.

You'll start with an introduction to the hidden algorithms that nature uses and find the approximate solutions to optimization problems. You'll then see how living creatures such as fish and birds are able to perform computation to solve specific optimization tasks. This book also covers various nature-inspired algorithms by reviewing code examples for each one followed by crisp and clear explanations of the algorithm using Java code. You'll examine the use of each algorithm in specific industry scenarios such as fleet scheduling in supply chain management, and shop floor management in industrial and manufacturing applications. 

Nature-Inspired Optimization Algorithms with Java is your pathway to understanding a variety of optimization problems that exist in various industries and domains and it will develop an ability to apply nature-inspired algorithms to find approximate solutions to them.

What You'll Learn
  • Study optimization and its problems
  • Examine nature-inspired algorithms such as Particle Swarm, Gray wolf, etc.
  • See how nature-inspired algorithms are being used to solve optimization problems
  • Use Java for solving the different nature-inspired algorithms with real-world examples
Who This Book Is For
 
Software developers/architects who are looking to hone their skills in area of problem solving related to optimization with Java.



Shashank Jain has been working in the IT industry for about 20 years, mainly in areas of cloud computing and distributed systems. He has a keen interest in virtualization techniques, security, and complex systems. Shashank has 32 software patents (many yet to be published) in the area of cloud computing, IoT, and machine learning. He is a speaker at multiple reputed cloud conferences. Shashank holds Sun, Microsoft, and Linux kernel certifications. He is also the author of the book 'Linux Containers and Virtualization' published by Apress.


Gain insight into the world of nature-inspired optimization techniques and algorithms. This book will prepare you to apply different nature-inspired optimization techniques to solve problems using Java.You'll start with an introduction to the hidden algorithms that nature uses and find the approximate solutions to optimization problems. You'll then see how living creatures such as fish and birds are able to perform computation to solve specific optimization tasks. This book also covers various nature-inspired algorithms by reviewing code examples for each one followed by crisp and clear explanations of the algorithm using Java code. You'll examine the use of each algorithm in specific industry scenarios such as fleet scheduling in supply chain management, and shop floor management in industrial and manufacturing applications. Nature-Inspired Optimization Algorithms with Java is your pathway to understanding a variety of optimization problems that exist in various industries and domains and it will develop an ability to apply nature-inspired algorithms to find approximate solutions to them.What You'll LearnStudy optimization and its problemsExamine nature-inspired algorithms such as Particle Swarm, Gray wolf, etc.See how nature-inspired algorithms are being used to solve optimization problemsUse Java for solving the different nature-inspired algorithms with real-world examplesWho This Book Is For Software developers/architects who are looking to hone their skills in area of problem solving related to optimization with Java.
Erscheint lt. Verlag 11.12.2021
Zusatzinfo XIII, 175 p. 36 illus.
Sprache englisch
Themenwelt Informatik Programmiersprachen / -werkzeuge Java
Schlagworte algorithm • ant colony optimization • Complex Systems • Optimization • Python • Slime mould optimization • Swarm intelligence • Whale Optimization Algorithm
ISBN-10 1-4842-7401-6 / 1484274016
ISBN-13 978-1-4842-7401-9 / 9781484274019
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Einführung, Ausbildung, Praxis

von Christian Ullenboom

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 38,95
Moderne GUIs für RIAs und Java-Applikationen

von Ralph Steyer

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
CHF 41,95