Machine Learning with PySpark (eBook)
XVIII, 220 Seiten
Apress (Verlag)
978-1-4842-7777-5 (ISBN)
Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.
Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.
After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications
What you will learn:
- Build a spectrum of supervised and unsupervised machine learning algorithms
- Use PySpark's machine learning library to implement machine learning and recommender systems
- Leverage the new features in PySpark's machine learning library
- Understand data processing using Koalas in Spark
- Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models
Who This Book Is For
Data science and machine learning professionals.Pramod Singh works at Bain & Company in the Advanced Analytics Group. He has extensive hands-on experience in large scale machine learning, deep learning, data engineering, designing algorithms and application development. He has spent more than 13 years working in the field of Data and AI at different organizations. He's published four books - Deploy Machine Learning Models to Production, Machine Learning with PySpark, Learn PySpark and Learn TensorFlow 2.0, all for Apress. He is also a regular speaker at major conferences such as O'Reilly's Strata and AI conferences. Pramod holds a BTech in electrical engineering from B.A.T.U, and an MBA from Symbiosis University. He has also earned a Data Science certification from IIM-Calcutta. He lives in Gurgaon with his wife and 5-year-old son. In his spare time, he enjoys playing guitar, coding, reading, and watching football.
Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You ll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You ll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You ll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark s latest ML library.After completing this book, you will understand how to use PySpark s machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark s machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals.
Erscheint lt. Verlag | 8.12.2021 |
---|---|
Zusatzinfo | XVIII, 220 p. 202 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | machine learning • PySpark • Python • Recommender Systems • Reinforcement Learning • supervised learning • Unsurpervised Learning |
ISBN-10 | 1-4842-7777-5 / 1484277775 |
ISBN-13 | 978-1-4842-7777-5 / 9781484277775 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich