Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Learning in Multi-step Prediction of Chaotic Dynamics - Matteo Sangiorgio, Fabio Dercole, Giorgio Guariso

Deep Learning in Multi-step Prediction of Chaotic Dynamics

From Deterministic Models to Real-World Systems
Buch | Softcover
XII, 104 Seiten
2022 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-94481-0 (ISBN)
CHF 82,35 inkl. MwSt

The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.

Introduction to chaotic dynamics' forecasting,. Basic concepts of chaos theory and nonlinear time-series analysis.- Artificial and real-world chaotic oscillators.-  Neural approaches for time series forecasting.- Neural predictors' accuracy.- Neural predictors' sensitivity and robustness.-  Concluding remarks on chaotic dynamics' forecasting.

Erscheinungsdatum
Reihe/Serie PoliMI SpringerBriefs
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo XII, 104 p. 46 illus., 25 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 189 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Chaotic Attractors • Environmental Variables • Exposure bias • Henon systems • Neural Architectures • Neural network training • Recurrent Neural Networks
ISBN-10 3-030-94481-6 / 3030944816
ISBN-13 978-3-030-94481-0 / 9783030944810
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20