Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning Techniques and Analytics for Cloud Security (eBook)

eBook Download: EPUB
2021 | 1. Auflage
480 Seiten
John Wiley & Sons (Verlag)
978-1-119-76409-0 (ISBN)

Lese- und Medienproben

Machine Learning Techniques and Analytics for Cloud Security -
Systemvoraussetzungen
190,99 inkl. MwSt
(CHF 186,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY

This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions

The aim of Machine Learning Techniques and Analytics for Cloud Security is to integrate machine learning approaches to meet various analytical issues in cloud security. Cloud security with ML has long-standing challenges that require methodological and theoretical handling. The conventional cryptography approach is less applied in resource-constrained devices. To solve these issues, the machine learning approach may be effectively used in providing security to the vast growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues, such as effective intrusion detection systems, zero-knowledge authentication systems, measures for passive attacks, protocols design, privacy system designs, applications, and many more. The book also contains case studies/projects outlining how to implement various security features using machine learning algorithms and analytics on existing cloud-based products in public, private and hybrid cloud respectively.

Audience

Research scholars and industry engineers in computer sciences, electrical and electronics engineering, machine learning, computer security, information technology, and cryptography.

Rajdeep Chakraborty obtained his PhD in CSE from the University of Kalyani. He is currently an assistant professor in the Department of Computer Science and Engineering, Netaji Subhash Engineering College, Garia, Kolkata, India. He has several publications in reputed international journals and conferences and has authored a book on hardware cryptography. His field of interest is mainly in cryptography and computer security. Anupam Ghosh obtained his PhD in Engineering from Jadavpur University. He is currently a professor in the Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata. He has published more than 80 papers in reputed international journals and conferences. His field of interest is mainly in AI, machine learning, deep learning, image processing, soft computing, bioinformatics, IoT, data mining. Jyotsna Kumar Mandal obtained his PhD in CSE from Jadavpur University He has more than 450 publications in reputed international journals and conferences. His field of interest is mainly in coding theory, data and network security, remote sensing & GIS-based applications, data compression error corrections, information security, watermarking, steganography and document authentication, image processing, visual cryptography, MANET, wireless and mobile computing/security, unify computing, chaos theory, and applications.

Erscheint lt. Verlag 30.11.2021
Reihe/Serie Advances in Learning Analytics for Intelligent Cloud-IoT Systems
Advances in Learning Analytics for Intelligent Cloud-IoT Systems
Sprache englisch
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • Cloud Computing • Computer Science • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Grid & Cloud Computing • Grid- u. Cloud-Computing • Informatik • Intelligente Systeme u. Agenten • Intelligent Systems & Agents • Künstliche Intelligenz • Maschinelles Lernen • Netzwerksicherheit
ISBN-10 1-119-76409-2 / 1119764092
ISBN-13 978-1-119-76409-0 / 9781119764090
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 11,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Praxishandbuch zu Krisenmanagement und Krisenkommunikation

von Holger Kaschner

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 34,15
Methodische Kombination von IT-Strategie und IT-Reifegradmodell

von Markus Mangiapane; Roman P. Büchler

eBook Download (2024)
Springer Vieweg (Verlag)
CHF 41,95