Multivariate Reduced-Rank Regression
Theory and Applications
Seiten
1998
|
1998 ed.
Springer-Verlag New York Inc.
978-0-387-98601-2 (ISBN)
Springer-Verlag New York Inc.
978-0-387-98601-2 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
In the area of multivariate analysis, there are two broad themes that have emerged over time. The analysis typically involves exploring the variations in a set of interrelated variables or investigating the simultaneous relation ships between two or more sets of variables. In either case, the themes involve explicit modeling of the relationships or dimension-reduction of the sets of variables. The multivariate regression methodology and its variants are the preferred tools for the parametric modeling and descriptive tools such as principal components or canonical correlations are the tools used for addressing the dimension-reduction issues. Both act as complementary to each other and data analysts typically want to make use of these tools for a thorough analysis of multivariate data. A technique that combines the two broad themes in a natural fashion is the method of reduced-rank regres sion. This method starts with the classical multivariate regression model framework but recognizes the possibility for the reduction in the number of parameters through a restrietion on the rank of the regression coefficient matrix. This feature is attractive because regression methods, whether they are in the context of a single response variable or in the context of several response variables, are popular statistical tools. The technique of reduced rank regression and its encompassing features are the primary focus of this book. The book develops the method of reduced-rank regression starting from the classical multivariate linear regression model.
1 Multivariate Linear Regression.- 2 Reduced-Rank Regression Model.- 3 Reduced-Rank Regression Models With Two Sets of Regressors.- 4 Reduced-Rank Regression Model With Autoregressive Errors.- 5 Multiple Time Series Modeling With Reduced Ranks.- 6 The Growth Curve Model and Reduced-Rank Regression Methods.- 7 Seemingly Unrelated Regressions Models With Reduced Ranks.- 8 Applications of Reduced-Rank Regression in Financial Economics.- 9 Alternate Procedures for Analysis of Multivariate Regression Models.- References.- Author Index.
Erscheint lt. Verlag | 18.9.1998 |
---|---|
Reihe/Serie | Lecture Notes in Statistics ; 136 |
Zusatzinfo | XIII, 258 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 880 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-387-98601-4 / 0387986014 |
ISBN-13 | 978-0-387-98601-2 / 9780387986012 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren
Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90
Buch | Hardcover (2024)
Hanser (Verlag)
CHF 55,95