Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Multivariate Reduced-Rank Regression - Raja Velu, Gregory C. Reinsel

Multivariate Reduced-Rank Regression

Theory and Applications
Buch | Softcover
258 Seiten
1998 | 1998 ed.
Springer-Verlag New York Inc.
978-0-387-98601-2 (ISBN)
CHF 149,75 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
In the area of multivariate analysis, there are two broad themes that have emerged over time. The analysis typically involves exploring the variations in a set of interrelated variables or investigating the simultaneous relation­ ships between two or more sets of variables. In either case, the themes involve explicit modeling of the relationships or dimension-reduction of the sets of variables. The multivariate regression methodology and its variants are the preferred tools for the parametric modeling and descriptive tools such as principal components or canonical correlations are the tools used for addressing the dimension-reduction issues. Both act as complementary to each other and data analysts typically want to make use of these tools for a thorough analysis of multivariate data. A technique that combines the two broad themes in a natural fashion is the method of reduced-rank regres­ sion. This method starts with the classical multivariate regression model framework but recognizes the possibility for the reduction in the number of parameters through a restrietion on the rank of the regression coefficient matrix. This feature is attractive because regression methods, whether they are in the context of a single response variable or in the context of several response variables, are popular statistical tools. The technique of reduced­ rank regression and its encompassing features are the primary focus of this book. The book develops the method of reduced-rank regression starting from the classical multivariate linear regression model.

1 Multivariate Linear Regression.- 2 Reduced-Rank Regression Model.- 3 Reduced-Rank Regression Models With Two Sets of Regressors.- 4 Reduced-Rank Regression Model With Autoregressive Errors.- 5 Multiple Time Series Modeling With Reduced Ranks.- 6 The Growth Curve Model and Reduced-Rank Regression Methods.- 7 Seemingly Unrelated Regressions Models With Reduced Ranks.- 8 Applications of Reduced-Rank Regression in Financial Economics.- 9 Alternate Procedures for Analysis of Multivariate Regression Models.- References.- Author Index.

Erscheint lt. Verlag 18.9.1998
Reihe/Serie Lecture Notes in Statistics ; 136
Zusatzinfo XIII, 258 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Gewicht 880 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 0-387-98601-4 / 0387986014
ISBN-13 978-0-387-98601-2 / 9780387986012
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 46,70