p-Adic Automorphic Forms on Shimura Varieties
Springer-Verlag New York Inc.
978-0-387-20711-7 (ISBN)
In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there.
1 Introduction.- 1.1 Automorphic Forms on Classical Groups.- 1.2 p-Adic Interpolation of Automorphic Forms.- 1.3 p-Adic Automorphic L-functions.- 1.4 Galois Representations.- 1.5 Plan of the Book.- 1.6 Notation.- 2 Geometric Reciprocity Laws.- 2.1 Sketch of Classical Reciprocity Laws.- 2.2 Cyclotomic Reciprocity Laws and Adeles.- 2.3 A Generalization of Galois Theory.- 2.4 Algebraic Curves over a Field.- 2.5 Elliptic Curves over a Field.- 2.6 Elliptic Modular Function Field.- 3 Modular Curves.- 3.1 Basics of Elliptic Curves over a Scheme.- 3.2 Moduli of Elliptic Curves and the Igusa Tower.- 3.3 p-Ordinary Elliptic Modular Forms.- 3.4 Elliptic ?-Adic Forms and p-Adic L-functions.- 4 Hilbert Modular Varieties.- 4.1 Hilbert–Blumenthal Moduli.- 4.2 Hilbert Modular Shimura Varieties.- 4.3 Rank of p-Ordinary Cohomology Groups.- 4.4 Appendix: Fundamental Groups.- 5 Generalized Eichler–Shimura Map.- 5.1 Semi-Simplicity of Hecke Algebras.- 5.2 Explicit Symmetric Domains.- 5.3 The Eichler–Shimura Map.- 6 Moduli Schemes.- 6.1 Hilbert Schemes.- 6.2 Quotients by PGL(n).- 6.3 Mumford Moduli.- 6.4 Siegel Modular Variety.- 7 Shimura Varieties.- 7.1 PEL Moduli Varieties.- 7.2 General Shimura Varieties.- 8 Ordinary p-Adic Automorphic Forms.- 8.1 True and False Automorphic Forms.- 8.2 Deformation Theory of Serre and Tate.- 8.3 Vertical Control Theorem.- 8.4 Irreducibility of Igusa Towers.- References.- Symbol Index.- Statement Index.
Reihe/Serie | Springer Monographs in Mathematics |
---|---|
Zusatzinfo | XI, 390 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-387-20711-2 / 0387207112 |
ISBN-13 | 978-0-387-20711-7 / 9780387207117 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich