Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistical Analysis with Swift - Jimmy Andersson

Statistical Analysis with Swift (eBook)

Data Sets, Statistical Models, and Predictions on Apple Platforms

(Autor)

eBook Download: PDF
2021 | 1st ed.
XIII, 214 Seiten
Apress (Verlag)
978-1-4842-7765-2 (ISBN)
Systemvoraussetzungen
56,99 inkl. MwSt
(CHF 55,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Work with large data sets, create statistical models, and make predictions with statistical methods using the Swift programming language. The variety of problems that can be solved using statistical methods range in fields from financial management to machine learning to quality control and much more.  Those who possess knowledge of statistical analysis become highly sought after candidates for companies worldwide.    

Starting with an introduction to statistics and probability theory, you will learn core concepts to analyze your data's distribution. You'll get an introduction to random variables, how to work with them, and how to leverage their properties in computations. On top of the mathematics, you'll learn several essential features of the Swift language that significantly reduce friction when working with large data sets. These functionalities will prove especially useful when working with multivariate data, which applies to most information in today's complex world.    
Once you know how to describe a data set, you will learn how to create models to make predictions about future events. All provided data is generated from real-world contexts so that you can develop an intuition for how to apply statistical methods with Swift to projects you're working on now.  

You will:
•Work with real-world data using the Swift programming language  
•Compute essential properties of data distributions to understand your customers, products, and processes  
•Make predictions about future events and compute how robust those predictions are 


Jimmy M Andersson is a software engineer in the automotive industry, specializing in acquiring and visualizing real-time data collected from cars. He is also a graduate student at Chalmers University of Technology, currently working towards a master's degree in data science and artificial intelligence. Outside of work and studies, Jimmy writes software development articles focusing on the Swift programming language. He also develops the StatKit library - a collection of statistical analysis tools for Swift developers. StatKit is open-source and available for anyone who wants to incorporate statistical methods into their programs.
Work with large data sets, create statistical models, and make predictions with statistical methods using the Swift programming language. The variety of problems that can be solved using statistical methods range in fields from financial management to machine learning to quality control and much more.  Those who possess knowledge of statistical analysis become highly sought after candidates for companies worldwide.    Starting with an introduction to statistics and probability theory, you will learn core concepts to analyze your data's distribution. You'll get an introduction to random variables, how to work with them, and how to leverage their properties in computations. On top of the mathematics, you'll learn several essential features of the Swift language that significantly reduce friction when working with large data sets. These functionalities will prove especially useful when working with multivariate data, which applies to most information in today's complex world.    Once you know how to describe a data set, you will learn how to create models to make predictions about future events. All provided data is generated from real-world contexts so that you can develop an intuition for how to apply statistical methods with Swift to projects you're working on now.  You will:* Work with real-world data using the Swift programming language  * Compute essential properties of data distributions to understand your customers, products, and processes  * Make predictions about future events and compute how robust those predictions are 
Erscheint lt. Verlag 30.10.2021
Zusatzinfo XIII, 214 p. 28 illus.
Sprache englisch
Themenwelt Informatik Betriebssysteme / Server Macintosh / Mac OS X
Informatik Programmiersprachen / -werkzeuge Mac / Cocoa Programmierung
Schlagworte Apple • Artificial Intelligence • atistical analysis • Big Data • Data Mining • Data Science • Ios • iPados • machine learning • MacOS • Regression Analysis • Statistical Inference • Statistics • SWIFT
ISBN-10 1-4842-7765-1 / 1484277651
ISBN-13 978-1-4842-7765-2 / 9781484277652
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich