Modular Functions and Dirichlet Series in Number Theory
Seiten
1990
|
Corr. 2. Printing
Springer Berlin (Hersteller)
978-3-540-97127-6 (ISBN)
Springer Berlin (Hersteller)
978-3-540-97127-6 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
This volume is a sequel to the author's Introduction to Analytic Number Theory (UTM 1976, 3rd Printing 1986). It presupposes an undergraduate background in number theory comparable to that provided in the first volume, together with a knowledge of the basic concepts of complex analysis. Most of this book is devoted to a classical treatment of elliptic and modular functions with some of their number-theoretic applications. Among the major topics covered are Rademacher's convergent series for the partition modular function, Lehner's congruences for the Fourier coefficients of the modular function j, and Hecke's theory of entire forms with multiplicative Fourier coefficients. The last chapter gives an account of Bohr's theory of equivalence of general Dirichlet series. In addition to the correction of misprints, minor changes in the exercises and an updated bibliography, this new edition includes an alternative treatment of the transformation formula for the Dedekind eta function, which appears as a five-page supplement to Chapter 3.
TOC: Elliptic Functions.- The Modular Group and Modular Functions.- The Dedekind eta Function.- Congruences for the Coefficients of the Modular Function j.- Rademacher's Series for the Partition Function.- Modular Forms with Multiplicative Coefficients.- Kronecker's Theorem with Applications.- General Dirichlet Series and Bohr's Equivalence Theorem.- Supplement.- Bibliography.- Index.
TOC: Elliptic Functions.- The Modular Group and Modular Functions.- The Dedekind eta Function.- Congruences for the Coefficients of the Modular Function j.- Rademacher's Series for the Partition Function.- Modular Forms with Multiplicative Coefficients.- Kronecker's Theorem with Applications.- General Dirichlet Series and Bohr's Equivalence Theorem.- Supplement.- Bibliography.- Index.
Tom A. Apostol, Emeritus Professor at the California Institute of Technology, is the author of several highly regarded texts on calculus, analysis, and number theory, and is Director of Project MATHEMATICS!, a series of computer-animated mathematics videotapes.
Contents: Elliptic Functions.- The Modular Group and Modular Functions.- The Dedekind eta Function.- Congruences for the Coefficients of the Modular Function j.- Rademacher's Series for the Partition Function.- Modular Forms with Multiplicative Coefficients.- Kronecker's Theorem with Applications.- General Dirichlet Series and Bohr's Equivalence Theorem.- Supplement.- Bibliography.- Index.-
Reihe/Serie | Graduate Texts in Mathematics ; 41 |
---|---|
Zusatzinfo | 25 figs. |
Verlagsort | Berlin |
Sprache | deutsch |
Gewicht | 490 g |
Einbandart | gebunden |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Schlagworte | Dirichletsche Reihe • Funktion (Mathematik) • Zahlentheorie |
ISBN-10 | 3-540-97127-0 / 3540971270 |
ISBN-13 | 978-3-540-97127-6 / 9783540971276 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |