Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data-Driven Engineering Design (eBook)

eBook Download: PDF
2021 | 1st ed. 2022
IX, 197 Seiten
Springer International Publishing (Verlag)
978-3-030-88181-8 (ISBN)

Lese- und Medienproben

Data-Driven Engineering Design - Ang Liu, Yuchen Wang, Xingzhi Wang
Systemvoraussetzungen
64,19 inkl. MwSt
(CHF 62,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book addresses the emerging paradigm of data-driven engineering design. In the big-data era, data is becoming a strategic asset for global manufacturers. This book shows how the power of data can be leveraged to drive the engineering design process, in particular, the early-stage design.

Based on novel combinations of standing design methodology and the emerging data science, the book presents a collection of theoretically sound and practically viable design frameworks, which are intended to address a variety of critical design activities including conceptual design, complexity management, smart customization, smart product design, product service integration, and so forth. In addition, it includes a number of detailed case studies to showcase the application of data-driven engineering design. The book concludes with a set of promising research questions that warrant further investigation.

Given its scope, the book will appeal to a broad readership, including postgraduate students, researchers, lecturers, and practitioners in the field of engineering design.



Dr. Ang Liu is an Associate Professor of Engineering Design at the School of Mechanical and Manufacturing Engineering, University of New South Wales, Australia. He received his M.S. and Ph.D. degrees from the University of Southern California, in 2008 and 2012, respectively. He is an Associate Member of the International Academy for Production Engineering (CIRP), Fellow of the PLuS Alliance, and Senior Fellow of the Higher Education Academy (SFHEA). He chaired multiple international design conferences such as the 13th International Conference on Axiomatic Design (ICAD2019). He serves in the editorial boards of multiple journals such as the Chinese Journal of Mechanical Engineering, Digital Twin, Scientific Reports, etc. He has published over 100 book chapters, journal articles, and conference papers. His research interests include innovative design thinking, design theory and methodology, smart manufacturing, digital twin, and engineering education.

Mr. Yuchen Wang is a Ph.D. candidate in Mechanical Engineering. He completed his undergraduate degree in Aerospace Engineering at the University of New South Wales (UNSW). His research lies at the intersections of design methodology, data science, and digital twin. As a head tutor, he had been teaching engineering design to a large cohort of college student at UNSW. He has published more than 10 journal articles, conference papers, and book chapters.

Mr. Xingzhi Wang is a Ph.D. candidate in Mechanical Engineering at the University of New South Wales (UNSW). He obtained his undergraduate degree and master's degree at the Sichuan University and UNSW, respectively. His research focuses on leveraging machine learning to enhance design customization. 


Erscheint lt. Verlag 9.10.2021
Zusatzinfo IX, 197 p. 55 illus., 51 illus. in color.
Sprache englisch
Themenwelt Informatik Weitere Themen CAD-Programme
Technik Bauwesen
Technik Maschinenbau
Schlagworte Big Data • Data-driven Design • Data Science • Design Methodology • Engineering design • Product Development • Product Service System • Smart Product
ISBN-10 3-030-88181-4 / 3030881814
ISBN-13 978-3-030-88181-8 / 9783030881818
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Technologische Grundlagen und industrielle Praxis

von André Borrmann; Markus König; Christian Koch …

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
CHF 87,90
Agilität kontinuierlich verbessern

von Irun D. Tosh

eBook Download (2024)
tredition (Verlag)
CHF 19,50