Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Comparison Finsler Geometry (eBook)

(Autor)

eBook Download: PDF
2021 | 1st ed. 2021
XXII, 316 Seiten
Springer International Publishing (Verlag)
978-3-030-80650-7 (ISBN)

Lese- und Medienproben

Comparison Finsler Geometry - Shin-ichi Ohta
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area.

Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner-Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry-Ledoux's Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger-Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement.

Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.



Shin-ichi Ohta is Distinguished Professor of Mathematics at Osaka University, Japan. His research interests lie in comparison geometry and its applications. He is a leading expert in the geometry and analysis of weighted Ricci curvature.
Erscheint lt. Verlag 9.10.2021
Reihe/Serie Springer Monographs in Mathematics
Springer Monographs in Mathematics
Zusatzinfo XXII, 316 p. 8 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Comparison geometry in Finsler context • Curve-dimension condition • finsler geometry • Finsler geometry for Riemannian geometers • Finsler manifolds • Functional inequalities in Finsler context • Gamma-calculus • Heat flow on Finsler manifolds • Introduction to Finsler geometry • Lower Ricci Curvature Bounds • Needle decomposition • Nonlinear Laplacian on Finsler manifolds • Ricci curvature • Weighted Ricci curvature
ISBN-10 3-030-80650-2 / 3030806502
ISBN-13 978-3-030-80650-7 / 9783030806507
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich