Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Cybersecurity Data Science (eBook)

Best Practices in an Emerging Profession
eBook Download: PDF
2021 | 1st ed. 2021
XXVII, 388 Seiten
Springer International Publishing (Verlag)
978-3-030-74896-8 (ISBN)

Lese- und Medienproben

Cybersecurity Data Science - Scott Mongeau, Andrzej Hajdasinski
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book encompasses a systematic exploration of Cybersecurity Data Science (CSDS) as an emerging profession, focusing on current versus idealized practice.  This book also analyzes challenges facing the emerging CSDS profession, diagnoses key gaps, and prescribes treatments to facilitate advancement.  Grounded in the management of information systems (MIS) discipline, insights derive from literature analysis and interviews with 50 global CSDS practitioners.  CSDS as a diagnostic process grounded in the scientific method is emphasized throughout

 

Cybersecurity Data Science (CSDS) is a rapidly evolving discipline which applies data science methods to cybersecurity challenges.  CSDS reflects the rising interest in applying data-focused statistical, analytical, and machine learning-driven methods to address growing security gaps.  This book offers a systematic assessment of the developing domain.  Advocacy is provided to strengthen professional rigor and best practices in the emerging CSDS profession. 

  

This book will be of interest to a range of professionals associated with cybersecurity and data science, spanning practitioner, commercial, public sector, and academic domains.  Best practices framed will be of interest to CSDS practitioners, security professionals, risk management stewards, and institutional stakeholders.  Organizational and industry perspectives will be of interest to cybersecurity analysts, managers, planners, strategists, and regulators.  Research professionals and academics are presented with a systematic analysis of the CSDS field, including an overview of the state of the art, a structured evaluation of key challenges, recommended best practices, and an extensive bibliography.



Scott Allen Mongeau, PhD MBA MA MA GD, OR Society CSci, INFORMS CAP, is a data analytics practitioner, researcher, and lecturer.  His research is based in the management of information systems (MIS) domain, integrating organizational, process, and technical perspectives.  He has over three decades of experience designing and deploying data analytics solutions across a range of industries.  Currently an analytics solution engineer at Google, he has worked with Deloitte, SAS Institute, Genentech, and a range of companies as a consultant.  Scott is based in Leiden, Netherlands.
Prof. dr. lr. Andrzej K. Hajdasinski (emeritus), PhD MSc, is a former fellow of the Technical University of Eindhoven (1976-77) and the Dutch Organization for Pure Scientific Research (ZWO) (1976-77).  Formerly an Associate Professor in Systems Theory at Technical University of Eindhoven (1980-86), between 1986 and 2003 he worked with a range of IT consulting companies (a.o. Volmac Nederland, Cap Volmac, Pink Roccade and KPMG).  From 2003 Hajdasinski has held the position of Business Development Executive with Capgemini Outsourcing B.V.  During his professional career Hajdasinski has delivered 42 full scope industrial projects in the Netherlands, Germany, France, UK, Poland, USA, Finland, and Norway. He is an author of 30 international publications in renowned international journals, 25 conference papers, and has been a chairman of many international conferences. 

Erscheint lt. Verlag 1.10.2021
Zusatzinfo XXVII, 388 p. 99 illus.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Wirtschaft Betriebswirtschaft / Management Wirtschaftsinformatik
Schlagworte analytics maturity • analytics process • Best Practices • Big Data • CSDS • cybersecurity • cybersecurity maturity • data analytics • data engineering • Data Management • Data Science • Data Scientist • Design science • machine learning • MIS • Practitioner Research • professionalization • Security analytics • Statistics • Unsupervised Learning
ISBN-10 3-030-74896-0 / 3030748960
ISBN-13 978-3-030-74896-8 / 9783030748968
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95