Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis
Springer International Publishing (Verlag)
978-3-030-87734-7 (ISBN)
PIPPI 2021 accepted 14 papers from the 18 submissions received. The workshop aims to bring together methods and experience from researchers and authors working on these younger cohorts and provides a forum for the open discussion of advanced image analysis approaches focused on the analysis of growth and development in the fetal, infant and paediatric period.
UNSURE 2021 - Uncertainty estimation and modelling and annotation uncertainty.- Model uncertainty estimation for medical Imaging based diagnosis.- Accurate simulation of operating system updates in neuroimaging using Monte-Carlo arithmetic.- Leveraging uncertainty estimates to improve segmentation performance in cardiac MR.- Improving the reliability of semantic segmentation of medical images by uncertainty modelling with Bayesian deep networks and curriculum learning.- Unpaired MR image homogeneisation by disentangled representations and its uncertainty.- Uncertainty-aware deep learning based deformable registration.- Monte Carlo Concrete DropPath for Epistemic Uncertainty Estimation in Brain Tumour segmentation.- Improving Aleatoric Uncertainty quantification in multi-annotated medical image segmentation with normalizing flows.- UNSURE 2021 - Domain shift robustness and risk management in clinical pipelines.- Task-agnostic out-of-distribution detection using kernel density estimation.- Out of distribution detection for medical images.- Robust selective classification of skin lesions with asymmetric costs.- Confidence-based Out-of-Distribution detection: a comparative study and analysis.- Novel disease detection using ensembles with regularized disagreement.- PIPPI2021.- Automatic Placenta Abnormality Detection using Convolutional Neural Networks on Ultrasound Texture.- Simulated Half-Fourier Acquisitions Single-shot Turbo Spin Echo (HASTE) of the Fetal Brain: Application to Super-Resolution Reconstruction.- Spatio-temporal atlas of normal fetal craniofacial feature development and CNN-based ocular biometry for motion-corrected fetal MRI.- Myelination of preterm brain networks at adolescence.- A bootstrap self-training method for sequence transfer: State-of-the-art placenta segmentation in fetal MRI.- Segmentation of the cortical plate in fetal brain MRI with a topological loss.- Fetal brain MRI measurements using a deep learning landmark network with reliability estimation.- CAS-Net: Conditional Atlas Generation and Brain Segmentation for Fetal MRI.- Detection of Injury and Automated Triage of Preterm Neonatal MRI using Patch-Based Gaussian Processes.- Assessment of Regional Cortical Development through Fissure Based Gestational Age Estimation in 3D Fetal Ultrasound.- Texture-based Analysis of Fetal Organs in Fetal Growth Restriction.- Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI.- Analysis of the Anatomical Variability of Fetal Brains with Corpus Callosum Agenesis.- Predicting preterm birth using multimodal fetal imaging.
Erscheinungsdatum | 20.10.2021 |
---|---|
Reihe/Serie | Image Processing, Computer Vision, Pattern Recognition, and Graphics | Lecture Notes in Computer Science |
Zusatzinfo | XIII, 296 p. 112 illus., 103 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 480 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Informatik ► Weitere Themen ► Bioinformatik | |
Schlagworte | Applications • Artificial Intelligence • Bioinformatics • Computer Science • computer vision • conference proceedings • Deep learning • Image Analysis • Image Processing • Image Quality • image reconstruction • Image Segmentation • Informatics • machine learning • Medical Images • Medical Imaging • paediatric image analysis • pattern recognition • perinatal image analysis • preterm image analysis • Research |
ISBN-10 | 3-030-87734-5 / 3030877345 |
ISBN-13 | 978-3-030-87734-7 / 9783030877347 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich