Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applied Statistics and Data Science -

Applied Statistics and Data Science

Proceedings of Statistics 2021 Canada, Selected Contributions
Buch | Hardcover
IX, 159 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-86132-2 (ISBN)
CHF 269,60 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This proceedings volume features top contributions in modern statistical methods from Statistics 2021 Canada, the 6th Annual Canadian Conference in Applied Statistics, held virtually on July 15-18, 2021. Papers are contributed from established and emerging scholars, covering cutting-edge and contemporary innovative techniques in statistics and data science. Major areas of contribution include Bayesian statistics; computational statistics; data science; semi-parametric regression; and stochastic methods in biology, crop science, ecology and engineering. It will be a valuable edited collection for graduate students, researchers, and practitioners in a wide array of applied statistical and data science methods.

Dr. Yogendra P. Chaubey is professor of mathematics and statistics at Concordia University. His research focus is in statistical methodology. Dr. Fassil Nebebe is professor of supply chain and business technology management at Concordia University. He teaches undergraduate and graduate courses in applied linear statistical models, research methods, managerial statistics, and business statistics. His research focuses on Bayesian methods, Gibbs sampling, data modeling, and statistical computing. Dr. Arusharka Sen is associate professor of mathematics and statistics at Concordia University. His research focuses on nonparametric function estimation and the analysis of censored data. Dr. Salim Lahmiri is assistant professor of supply chain and business technology management at Concordia University. He serves as associate editor for Expert Systems with Applications; Machine Learning with Applications; Chaos, Solitons & Fractals; Entropy; and Machine Learning & Knowledge Extraction. Dr. Lahmiri's research focuses on artificial intelligence, intelligent systems, data science, predictive analytics, and pattern recognition.

1. Minimum Profile Hellinger Distance Estimation for Semiparametric Simple Linear Regression Model.- 2. A Spatiotemporal Investigation of the Cod Stock in the Northern Gulf of St-Lawrence.- 3. Modeling Obesity Rate with Spatial Auto-correlation: A Case Study.- 4. Bayesian Inference for Inverse Gaussian Data with Emphasis on the Coefficient of Variation.- 5. Estimation and Testing of a Common Coefficient of Variation from Inverse Gaussian Distributions.- 6. A Markov Model of Polygenic Inheritance.- 7. Bayes Linear Emulation of Simulated Crop Yield.

Erscheinungsdatum
Reihe/Serie Springer Proceedings in Mathematics & Statistics
Zusatzinfo IX, 159 p. 1 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 384 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte actuarial mathematics • Computational Statistics • data analytics • Data Mining • Data Science • environmental statistics • Probability and Statistics in Computer Science • Small area estimation • Statistical Methods • Supply Chain • Survival Analysis
ISBN-10 3-030-86132-5 / 3030861325
ISBN-13 978-3-030-86132-2 / 9783030861322
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 46,70