Nicht aus der Schweiz? Besuchen Sie lehmanns.de
VLSI and Hardware Implementations using Modern Machine Learning Methods -

VLSI and Hardware Implementations using Modern Machine Learning Methods

Buch | Hardcover
312 Seiten
2021
CRC Press (Verlag)
978-1-032-06171-9 (ISBN)
CHF 209,45 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book aims to provide the latest machine learning based methods, algorithms, architectures, and frameworks designed for VLSI design with focus on digital, analog and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas.
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques.

Features:



Provides the details of state-of-the-art machine learning methods used in VLSI design
Discusses hardware implementation and device modeling pertaining to machine learning algorithms
Explores machine learning for various VLSI architectures and reconfigurable computing
Illustrates the latest techniques for device size and feature optimization
Highlights the latest case studies and reviews of the methods used for hardware implementation

This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.

Sandeep Saini received his B.Tech. degree in Electronics and Communication Engineering from the International Institute of Information Technology, Hyderabad, India, in 2008. He completed his M.S. from the same institute in 2010. He earned his Ph.D. from Malaviya National Institute of Technology, Jaipur, in 2020. He is working at LNM Institute of Information Technology, Jaipur, as an Assistant Professor from 2011 onward. He has worked as adjunct faculty at the International Institute of Information Technology (IIIT), Bangalore (Deputation at Myanmar Institute of Information Technology, Mandalay, Myanmar) for two years, and a Lecturer at Jaypee University of Engineering and Technology, Guna, for 3 semesters. His research interests are in Deep Learning, Machine learning, Natural Language Processing, cognitive modeling of language learning models, Biomedical and agricultural applications of deep learning. Sandeep is a member of IEEE since 2009 and an active member of ACM as well. Kusum Lata has received her M.Tech. and Ph.D. degrees from Indian Institute of Technology (IIT), Roorkee, India and Indian Institute of Science (IISc), Bangalore, India in 2003 and 2010. She has also worked as a Research Associate in the Centre of Electronics Design and Technology, IISc Bangalore, India, for six months after completing her PhD. Since June 2010, She has worked as Lecturer for three years at the Indian Institute of Information Technology, Allahabad (IIIT-A) India. She has worked as Assistant Professor from December 2013 to February 2016, and since March 2016, she is working as an Associate Professor in the Department of Electronics and Communication Engineering at The LNM Institute of Information Technology, Jaipur. She is the recipient of the Outstanding Research Paper Award in 1st Asia Symposium on Quality Electronic Design (ASQED-2009), July 15-16, 2009, Kula Lumpur, Malaysia. Her research interests include digital circuit design using FPGAs, Design for Testability, Formal Verification of Analog and Mixed Signal Designs and Hardware Security. Kusum is a member of IEEE since 2003 and an active member of ACM since 2011. She is also a lifetime member Computer Society of India. G R Sinha is an Adjunct Professor at the International Institute of Information Technology Bangalore (IIITB) and currently deputed as Professor at Myanmar Institute of Information Technology (MIIT) Mandalay Myanmar. He obtained his B.E. (Electronics Engineering) and M.Tech. (Computer Technology) with Gold Medal from National Institute of Technology Raipur, India. He received his Ph.D. in Electronics & Telecommunication Engineering from Chhattisgarh Swami Vivekanand Technical University (CSVTU) Bhilai, India. He is Visiting Professor (Honorary) in Sri Lanka Technological Campus Colombo for one the year 2019-2020. He has published 258 research papers, book chapters and books at the International level that includes Biometrics published by Wiley India, a subsidiary of John Wiley; Medical Image Processing published by Prentice Hall of India and 05 Edited books on Cognitive Science-Two Volumes (Elsevier), Optimization Theory (IOP) and Biometrics (Springer). He is currently editing 06 more books on Biomedical signals; Brain and behavior computing; Modern Sensors, and Data Deduplication with Elsevier, IOP, CRC Press. He is an active reviewer and editorial member of more than 12 reputed International Journals in his research areas, such as IEEE Transactions, Elsevier Journals, Springer Journals etc. He has teaching and research experience of 21 years. He has been Dean of Faculty and Executive Council Member of CSVTU and currently a member of the Senate of MIIT. Dr Sinha has been delivering ACM lectures as ACM Distinguished Speaker in the field of DSP since 2017 across the world. His few more important assignments include Expert Member for Vocational Training Programme by Tata Institute of Social Sciences (TISS) for Two Years (2017-2019); Chhattisgarh Representative of IEEE MP Sub-Section Executive Council (2016-2019); Distinguished Speaker in the field of Digital Image Processing by Computer Society of India (2015). He is the recipient of many awards and recognitions like TCS Award 2014 for Outstanding contributions in Campus Commune of TCS, Rajaram Bapu Patil ISTE National Award 2013 for Promising Teacher in Technical Education by ISTE New Delhi, Emerging Chhattisgarh Award 2013, Engineer of the Year Award 2011, Young Engineer Award 2008, Young Scientist Award 2005, IEI Expert Engineer Award 2007, ISCA Young Scientist Award 2006 Nomination and Deshbandhu Merit Scholarship for 05 years. He served as Distinguished IEEE Lecturer in IEEE India council for the Bombay section. He is a Senior Member of IEEE, Fellow of Institute of Engineers India and Fellow of IETE India. He has delivered more than 50 Keynote/Invited Talks and Chaired many Technical Sessions in International Conferences across the world, such as Singapore, Myanmar, Sri Lanka, Bangalore, Mumbai, Trivandrum, Hyderabad, Mysore, Allahabad, Nagpur, Yangon, Meikhtila. His Special Session on "Deep Learning in Biometrics" was included in IEEE International Conference on Image Processing 2017. He is also a member of many National Professional bodies like ISTE, CSI, ISCA, and IEI. He is a member of the university’s various committees and has been Vice President of Computer Society of India for Bhilai Chapter for two consecutive years. He is a Consultant of various Skill Development initiatives of NSDC, Govt. of India. He is a regular Referee of Project Grants under the DST-EMR scheme and several other schemes of Govt. of India. He received a few important consultancy supports as grants and travel support. Dr Sinha has Supervised Eight (08) PhD Scholars, 15 M. Tech. Scholars and has been Supervising 01 more PhD Scholar. His research interest includes Biometrics, Cognitive Science, Medical Image Processing, Computer Vision, Outcome based Education (OBE) and ICT tools for developing Employability Skills.

1. VLSI and Hardware Implementation Using Machine Learning Methods: A Systematic Literature Review. 2. Machine Learning for Testing of VLSI Circuit. 3. Online Checkers to Detect Hardware Trojans in AES Hardware Accelerators. 4. Machine Learning Methods for Hardware Security. 5. Application Driven Fault Identification in NoC Designs. 6. Online Test Derived from Binary Neural Network for Critical Autonomous Automotive Hardware. 7. Applications of Machine Learning in VLSI Design. 8. An Overview of High-Performance Computing Techniques Applied to Image Processing. 9. Machine Learning Algorithms for Semiconductor Device Modeling. 10. Securing IoT-Based Microservices Using Artificial Intelligence. 11. Applications of the Approximate Computing on ML Architecture. 12. Hardware Realization of Reinforcement Learning Algorithms for Edge Devices. 13. Deep Learning Techniques for Side-Channel Analysis. 14. Machine Learning in Hardware Security of IoT Nodes. 15. Integrated Photonics for Artificial Intelligence Applications.

Erscheinungsdatum
Zusatzinfo 35 Tables, black and white; 114 Line drawings, black and white; 5 Halftones, black and white; 119 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 585 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-032-06171-5 / 1032061715
ISBN-13 978-1-032-06171-9 / 9781032061719
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20