Statistical Analysis of Proteomic Data
Springer-Verlag New York Inc.
978-1-0716-1966-7 (ISBN)
Authoritative and practical, Statistical Analysis of Proteomic Data: Methods and Tools serves as an ideal guide for proteomics researchers looking to extract the best of their data with state-of-the art tools while also deepening their understanding of data analysis.
Unveiling the Links between Peptide Identification and Differential Analysis FDR Controls by Means of a Practical Introduction to Knockoff Filters.- A Pipeline for Peptide Detection Using Multiple Decoys.- Enhanced Proteomic Data Analysis with MetaMorpheus.- Validation of MS/MS Identifications and Label-Free Quantification Using Proline.- Integrating Identification and Quantification Uncertainty for Differential Protein Abundance Analysis with Triqler.- Left-Censored Missing Value Imputation Approach for MS-Based Proteomics Data with Gsimp.- Towards a More Accurate Differential Analysis of Multiple Imputed Proteomics Data with mi4limma.- Uncertainty Aware Protein-Level Quantification and Differential Expression Analysis of Proteomics Data with seaMass.- Statistical Analysis of Quantitative Peptidomics and Peptide-Level Proteomics Data with Prostar.- msmsEDA and msmsTests: Label-Free Differential Expression by Spectral Counts.- Exploring Protein Interactome Data with IPinquiry: Statistical Analysis and Data Visualization by Spectral Counts.- Statistical Analysis of Post-Translational Modifications Quantified by Label-Free Proteomics Across Multiple Biological Conditions with R: Illustration from SARS-CoV-2 Infected Cells.- Fast, Free, and Flexible Peptide and Protein Quantification with FlashLFQ.- Robust Prediction and Protein Selection with Adaptive PENSE.- Multivariate Analysis with the R Package mixOmics.- Integrating Multiple Quantitative Proteomic Analyses Using MetaMSD.- Application of WGCNA and PloGO2 in the Analysis of Complex Proteomic Data.
Erscheinungsdatum | 10.03.2022 |
---|---|
Reihe/Serie | Methods in Molecular Biology ; 2426 |
Zusatzinfo | 477 Illustrations, color; 50 Illustrations, black and white; XI, 393 p. 527 illus., 477 illus. in color. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Informatik ► Weitere Themen ► Bioinformatik | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Biologie ► Biochemie | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Naturwissenschaften ► Chemie | |
Schlagworte | Chemostatistics • Data processing computational routines • Differential Analysis • high dimensional statistics • machine learning • Software suites |
ISBN-10 | 1-0716-1966-7 / 1071619667 |
ISBN-13 | 978-1-0716-1966-7 / 9781071619667 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich