Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Representation Learning (eBook)

Propositionalization and Embeddings
eBook Download: PDF
2021 | 1. Auflage
XVI, 163 Seiten
Springer-Verlag
978-3-030-68817-2 (ISBN)

Lese- und Medienproben

Representation Learning -  Nada Lavrac,  Vid Podpecan,  Marko Robnik-Šikonja
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.

Prof. Nada Lavrac (Jožef Stefan Institute, Slovenia) is Senior researcher at the Department of Knowledge Technologies at JSI (was Head of Department in 2014-2020), and Full Professor at University of Nova Gorica and International Postgraduate School Jožef Stefan (was Vice-Dean in 2016-2020). Her research interests are machine learning, data mining, text mining, knowledge management and computational creativity. She was chair of several conferences ICCC 2014, ILP 2012, AIME 2011, ..., co-chair of conferences including SOKD 2008-2010, ILP 2008, IDA 2007, DS 2006, ..., keynote speaker at KI2020, ADBIS2019, ISWC 2017, LPNMR 2015, JSMI 2014, ... She is/was member of editorial boards of Artificial Intelligence in Medicine, AI Communications, New Generation Computing, Applied AI, Machine Learning Journal and Data Mining and Knowledge Discovery. She is ECCAI/EurAI Fellow, was vice-president of ECCAI (1996-98), and served as member of the International Machine Learning Society board and Artificial Intelligence in Medicine board.

Vid Podpecan, PhD, is a research associate at the Department of Knowledge Technologies at the Jožef Stefan Institute. He obtained his BSc in computer science from the University of Ljubljana in 2007, and his PhD from the Joz?ef Stefan International Postgraduate School in 2013. His research interests include machine learning, computational systems biology, text mining and natural language processing, and robotics. He co-authored a scientific monograph and published the results of his research in more than 50 scientific publications. He is also actively involved in promoting STEAM with a focus on robotics, programming, and art for which he received an award by the Slovene Science Foundation.

Prof Marko Robnik-Sikonja is Professor of Computer Science and Informatics at University of Ljubljana, Faculty of Computer and Information Science. His research interests span machine learning, data mining, natural language processing, network analytics, and application of data science techniques. His most notable scientific results are from the areas of feature evaluation, ensemble learning, explainable artificial intelligence, data generation, and natural language analytics.  He is (co)author of over 150 scientific publications that were cited more than 5,000 times, and three open-source R data mining packages. He participates in several national and international projects, regularly serves as programme committees member of top artificial intelligence and machine learning conferences, and is an editorial board member of seven international journals.
Erscheint lt. Verlag 10.7.2021
Zusatzinfo XVI, 163 p. 46 illus., 38 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Mathematik
Schlagworte data fusion • data structures • Deep learning • Embeddings • Feature Construction • heterogeneous data mining • information networks • machine learning • Networks • Ontologies • open science • propositionalization • Relational Data Mining • relational learning • semantic data mining • texts
ISBN-10 3-030-68817-8 / 3030688178
ISBN-13 978-3-030-68817-2 / 9783030688172
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30
Wie Unternehmen Daten zur Skalierung ihres Geschäfts nutzen können

von Jonas Rashedi

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 27,35