Extrinsic Geometry of Foliations (eBook)
XIII, 319 Seiten
Springer International Publishing (Verlag)
978-3-030-70067-6 (ISBN)
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics.
The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.
Vladimir Rovenski (University of Haifa) and Pawe? Walczak (University of Lodz), are well-known scientists, specializing in differential geometry, topology and dynamics of foliations. Their scientific contact began in May/June of 1995 during the International Conference 'Foliations: Geometry and Dynamics' in Warsaw. Their common interests in Riemannian geometry of foliations and submanifolds sparked the beginning of their scientific co-operation. The authors formed a common theme of research and the idea of a scientific relay race. The scientific relay race was started by Prof. Walczak who had won a Marie Curie grant and conducted research at Institut de Mathématiques de Bourgogne (Dijon, France) from 2003-2005. Prof. Rovenski won a similar Marie Curie grant and conducted research in cooperation with Walczak at the University of Lodz from 2008-2010. Their scientific synergies ongoing, and the scientific relay race is successfully continued by their students. The collaboration and friendship of the authors for over 25 years has led to several scientific works in extrinsic geometry of foliations of Riemannian and Finsler manifolds.
Erscheint lt. Verlag | 22.5.2021 |
---|---|
Reihe/Serie | Progress in Mathematics | Progress in Mathematics |
Zusatzinfo | XIII, 319 p. 22 illus., 6 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | co-dimension one foliations • Curvature • Einstein-Hilbert • extrinsic geometry • Foliations • Godbillon-Vey • Integral formulas • mean curvature • MInkowski norms • Ricci Flow • Toponogov's conjecture • variation formulas • Yamabe Problem |
ISBN-10 | 3-030-70067-4 / 3030700674 |
ISBN-13 | 978-3-030-70067-6 / 9783030700676 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich