Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Artificial Intelligence in Drug Design -

Artificial Intelligence in Drug Design

Alexander Heifetz (Herausgeber)

Buch | Hardcover
529 Seiten
2021 | 1st ed. 2022
Springer-Verlag New York Inc.
978-1-0716-1786-1 (ISBN)
CHF 329,50 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as:  structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. 
Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.

Applications of Artificial Intelligence in Drug Design: Opportunities and Challenges.- Machine Learning Applied to the Modeling of Pharmacological and ADMET Endpoints.- Fighting COVID-19 with Artificial Intelligence.- Application of Artificial Intelligence and Machine Learning in Drug Discovery.- Deep Learning and Computational Chemistry.- Has Drug Design Augmented by Artificial Intelligence Become a Reality?.- Network Driven Drug Discovery.- Predicting Residence Time of GPCR Ligands with Machine Learning.- De Novo Molecular Design with Chemical Language Models.- Deep Neural Networks for QSAR.- Deep Learning in Structure-Based Drug Design.- Deep Learning Applied to Ligand-Based De Novo Drug Design.- Ultra-High Throughput Protein-Ligand Docking with Deep Learning.- Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors.- Artificial Intelligence in Compound Design.- Artificial Intelligence, Machine Learning, and Deep Learning in Real Life Drug Design Cases.- Artificial Intelligence-Enabled De Novo Design of Novel Compounds that are Synthesizable.- Machine Learning from Omics Data.- Deep Learning in Therapeutic Antibody Development.- Machine Learning for In Silico ADMET Prediction.- Opportunities and Considerations in the Application of Artificial Intelligence to Pharmacokinetic Prediction.- Artificial Intelligence in Drug Safety and Metabolism.- Molecule Ideation Using Matched Molecular Pairs.

Erscheinungsdatum
Reihe/Serie Methods in Molecular Biology ; 2390
Zusatzinfo 89 Illustrations, color; 14 Illustrations, black and white; XI, 529 p. 103 illus., 89 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 254 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
Medizin / Pharmazie Pharmazie
ISBN-10 1-0716-1786-9 / 1071617869
ISBN-13 978-1-0716-1786-1 / 9781071617861
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20