Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Foundations of Statistics for Data Scientists - Alan Agresti, Maria Kateri

Foundations of Statistics for Data Scientists

With R and Python
Buch | Hardcover
468 Seiten
2021
Chapman & Hall/CRC (Verlag)
978-0-367-74845-6 (ISBN)
CHF 148,35 inkl. MwSt
This book shows the elements of statistical science that are highly relevant for students who plan to become data scientists. However, most of the content focuses on the statistical methods and the theory behind them, rather than on data science.
Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python.

Key Features:



Shows the elements of statistical science that are important for students who plan to become data scientists.
Includes Bayesian and regularized fitting of models (e.g., showing an example using the lasso), classification and clustering, and implementing methods with modern software (R and Python).
Contains nearly 500 exercises.

The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website (http://stat4ds.rwth-aachen.de/) has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.

Alan Agresti, Distinguished Professor Emeritus at the University of Florida, is the author of seven books, including Categorical Data Analysis (Wiley) and Statistics: The Art and Science of Learning from Data (Pearson), and has presented short courses in 35 countries. His awards include an honorary doctorate from De Montfort University (UK) and Statistician of the Year from the American Statistical Association (Chicago chapter). Maria Kateri, Professor of Statistics and Data Science at the RWTH Aachen University, authored the monograph Contingency Table Analysis: Methods and Implementation Using R (Birkhäuser/Springer) and a textbook on mathematics for economists (in German). She has long-term experience in teaching statistics courses to students of Data Science, Mathematics, Statistics, Computer Science, Business Administration, and Engineering.

1. Introduction to Statistical Science 2. Probability Distributions 3. Sampling Distributions 4. Statistical Inference: Estimation Skip Product Menu 5. Statistical Inference: Significance Testing 6. Linear Models and Least Squares 7. Generalized Linear Models 8. Classification and Clustering 9. Statistical Science: A Historical Overview Appendices

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Texts in Statistical Science
Zusatzinfo 104 Halftones, color; 3 Halftones, black and white; 104 Illustrations, color; 3 Illustrations, black and white
Sprache englisch
Maße 178 x 254 mm
Gewicht 1360 g
Themenwelt Mathematik / Informatik Mathematik Statistik
ISBN-10 0-367-74845-2 / 0367748452
ISBN-13 978-0-367-74845-6 / 9780367748456
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 69,95
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 41,90