Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning: Theoretical Foundations and Practical Applications -

Machine Learning: Theoretical Foundations and Practical Applications (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
XI, 172 Seiten
Springer Singapore (Verlag)
978-981-336-518-6 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms. 



Dr. Siddharth Swarup Rautary presently working as Associate Professor at the School of Computer Engineering, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India. He has teaching and research experience of more than 9 years. He did his doctoral degree from Indian Institute of Information Technology, Allahabad, U.P., India. His research interest includes big data analytics, image processing, intelligent systems, human-computer interaction and similar innovative areas. His research contribution includes 05 co-edited proceedings/books which include ASIC Springer series, more than 60 research publications in reputed conferences, book chapters and journals indexed in Scopus/SCI/ESCI and with a citation index of 1800 as on date. As an organizing chair, he has organized 05 international conferences (ICCAN2017, ICCAN 2019, 16th ICDCIT 2020, FICTA 2016, FICTA 2017) and has been part of different core committees of other conferences and workshops. He has delivered invited talks in different workshops and conferences. 

Dr. Manjusha Pandey presently working as Associate Professor at the School of Computer Engineering, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India. She has teaching and research experience of more than 9 years. She did her doctoral degree from Indian Institute of Information Technology, Allahabad, U.P., India; her research interest includes big data analytics, computer networks, intelligent systems, machine learning and similar innovative areas. Her research contribution includes 04 co-edited proceedings/books which include SIS Springer series, more than 65 research publications in reputed conferences, book chapters and journals indexed in Scopus/SCI/ESCI and with a citation index of 600 as on date. As an organizing chair, she has organized 02 international conferences and has been part of different core committees of other conferences and workshops. She has delivered invited talks in different workshops and conferences. 



This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms. 
Erscheint lt. Verlag 19.4.2021
Reihe/Serie Studies in Big Data
Studies in Big Data
Zusatzinfo XI, 172 p. 71 illus., 55 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Analytic • Applications • DALC • machine learning applications • ML and Industry 5.0 • Pre-Processing • theoretical concepts
ISBN-10 981-336-518-8 / 9813365188
ISBN-13 978-981-336-518-6 / 9789813365186
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95