Fourier Analysis and Convexity
Birkhauser Boston Inc (Verlag)
978-0-8176-3263-2 (ISBN)
This unified, self-contained book presents both a broad overview of Fourier analysis and convexity, as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used to distill the essence of many mathematical problems in a natural and elegant way.
Lattice Point Problems: Crossroads of Number Theory, Probability Theory and Fourier Analysis.- Totally Geodesic Radon Transform of LP-Functions on Real Hyperbolic Space.- Fourier Techniques in the Theory of Irregularities of Point Distribution.- Spectral Structure of Sets of Integers.- 100 Years of Fourier Series and Spherical Harmonics in Convexity.- Fourier Analytic Methods in the Study of Projections and Sections of Convex Bodies.- The Study of Translational Tiling with Fourier Analysis.- Discrete Maximal Functions and Ergodic Theorems Related to Polynomials.- What Is It Possible to Say About an Asymptotic of the Fourier Transform of the Characteristic Function of a Two-dimensional Convex Body with Nonsmooth Boundary?.- SomeRecent Progress on the Restriction Conjecture.- Average Decayof the Fourier Transform.
Erscheint lt. Verlag | 6.8.2004 |
---|---|
Reihe/Serie | Applied and Numerical Harmonic Analysis |
Zusatzinfo | IX, 268 p. |
Verlagsort | Secaucus |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-8176-3263-8 / 0817632638 |
ISBN-13 | 978-0-8176-3263-2 / 9780817632632 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich