Arithmetic of Higher-Dimensional Algebraic Varieties
Birkhauser Boston Inc (Verlag)
978-0-8176-3259-5 (ISBN)
This text, which focuses on higher dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry.
Diophantine equations: progress and problems.- Rational points and analytic number theory.- Weak approximation on algebraic varieties.- Counting points on varieties using universal torsors.- The Cox ring of a Del Pezzo surface.- Counting rational points on threefolds.- Remarques sur l’approximation faible sur un corps de fonctions d’une variable.- K3 surfaces over number fields with geometric Picard number one.- Jumps in Mordell-Weil rank and Arithmetic Surjectivity.- Universal torsors and Cox rings.- Random diophantine equations.- Descent on simply connected surfaces over algebraic number fields.- Rational points on compactifications of semi-simple groups of rank 1.- Weak Approximation on Del Pezzo surfaces of degree 4.- Transcendental Brauer-Manin obstruction on a pencil of elliptic curves.
Reihe/Serie | Progress in Mathematics ; 226 |
---|---|
Zusatzinfo | XVI, 287 p. |
Verlagsort | Secaucus |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-8176-3259-X / 081763259X |
ISBN-13 | 978-0-8176-3259-5 / 9780817632595 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich