Analysis and Linear Algebra
The Singular Value Decomposition and Applications
Seiten
2021
American Mathematical Society (Verlag)
978-1-4704-6332-8 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-6332-8 (ISBN)
Provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book.
This book provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book: determining the subspace that ""best'' approximates a given set (dimension reduction of a data set); finding the ""best'' lower rank approximation of a given matrix (compression and general approximation problems); the Moore-Penrose pseudo-inverse (relevant to solving least squares problems); and the orthogonal Procrustes problem (finding the orthogonal transformation that most closely transforms a given collection to a given configuration), as well as its orientation-preserving version.
The point of view throughout is analytic. Readers are assumed to have had a rigorous introduction to sequences and continuity. These are generalized and applied to linear algebraic ideas. Along the way to the SVD, several important results relevant to a wide variety of fields (including random matrices and spectral graph theory) are explored: the Spectral Theorem; minimax characterizations of eigenvalues; and eigenvalue inequalities. By combining analytic and linear algebraic ideas, readers see seemingly disparate areas interacting in beautiful and applicable ways.
This book provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book: determining the subspace that ""best'' approximates a given set (dimension reduction of a data set); finding the ""best'' lower rank approximation of a given matrix (compression and general approximation problems); the Moore-Penrose pseudo-inverse (relevant to solving least squares problems); and the orthogonal Procrustes problem (finding the orthogonal transformation that most closely transforms a given collection to a given configuration), as well as its orientation-preserving version.
The point of view throughout is analytic. Readers are assumed to have had a rigorous introduction to sequences and continuity. These are generalized and applied to linear algebraic ideas. Along the way to the SVD, several important results relevant to a wide variety of fields (including random matrices and spectral graph theory) are explored: the Spectral Theorem; minimax characterizations of eigenvalues; and eigenvalue inequalities. By combining analytic and linear algebraic ideas, readers see seemingly disparate areas interacting in beautiful and applicable ways.
James Bisgard, Central Washington University, Ellensburg, WA
Introduction
Linear algebra and normed vector spaces
Main tools
The spectral theorem
The singular value decomposition
Applications revisited
A glimpse towards infinite dimensions
Bibliography
Index of notation
Index
Erscheinungsdatum | 21.06.2021 |
---|---|
Reihe/Serie | Student Mathematical Library |
Verlagsort | Providence |
Sprache | englisch |
Maße | 140 x 216 mm |
Gewicht | 288 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4704-6332-6 / 1470463326 |
ISBN-13 | 978-1-4704-6332-8 / 9781470463328 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
A Selection of Highlights
Buch | Softcover (2023)
De Gruyter (Verlag)
CHF 97,90