Nicht aus der Schweiz? Besuchen Sie lehmanns.de

How Did English Songs Evolve? Retrieving Information from Song Lyrics Via Natural Language Processing and Statistical Topic Modeling (eBook)

(Autor)

eBook Download: PDF
2021 | 1. Auflage
GRIN Verlag
978-3-346-37624-4 (ISBN)

Lese- und Medienproben

How Did English Songs Evolve? Retrieving Information from Song Lyrics Via Natural Language Processing and Statistical Topic Modeling - Laura Zapf
Systemvoraussetzungen
36,99 inkl. MwSt
(CHF 36,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Master's Thesis from the year 2019 in the subject Mathematics - Statistics, grade: 1,0, University of Bamberg (Statistik und Ökonometrie), language: English, abstract: In this thesis, the similarity, the complexity, as well as the evolution of English song lyrics over the past five decades will be examined with the help of statistical methods. Hence, the central research question of this thesis is: Can information gained by Natural Language Processing and statistical topic modelling be used to determine whether and to what extent song lyrics of various genres changed over the course of the past 50 years?

Based on this, the goals of this thesis are:determining how similar songs of five diverse genres (alternative, country, pop, rock, and hip-hop) are, as measured by text statistics and text features that are composed by Natural Language Processing (NLP) and text mining methods. Additionally, using these methods as well as an attempt to find out whether song lyrics are becoming less complex and therefore less sophisticated And, finally, the main target of this thesis set for itself, computing statistical topic models by applying Latent Dirichlet Allocation (LDA), to analyse how similar the topics of songs are and whether they changed over time. This will be conducted by calculating similarity measures on the per-topic-per-word probability distributions that are output of the LDA models.
Erscheint lt. Verlag 29.3.2021
Verlagsort München
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte machine learning • Natural Language Processing • Statistics • Topic modelling
ISBN-10 3-346-37624-9 / 3346376249
ISBN-13 978-3-346-37624-4 / 9783346376244
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)
Größe: 8,6 MB

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich