Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applications of Artificial Intelligence in Tunnelling and Underground Space Technology -  Danial Jahed Armaghani,  Aydin Azizi

Applications of Artificial Intelligence in Tunnelling and Underground Space Technology (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
IX, 70 Seiten
Springer Singapore (Verlag)
978-981-16-1034-9 (ISBN)
Systemvoraussetzungen
74,89 inkl. MwSt
(CHF 73,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, powerful and easy to implement, in estimating TBM performance parameters. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs.   



Danial Jahed Armaghani: I, currently work as a senior lecturer in the Faculty of Engineering, University of Malaya, Malaysia. I received my postdoc from Amirkabir University of Technology, Tehran, Iran and my Ph.D degree, in Civil-Geotechnics, from Universiti Teknologi Malaysia, Malaysia. My area of research is tunnelling, rock mechanics, piling technology, blasting environmental issues, applying artificial intelligence and optimization algorithms in geotechnics. I have published more than 100 papers in well-established ISI and Scopus journals, national and international conferences. 

Dr. Aydin Azizi holds a PhD degree in Mechanical Engineering. Certified as an official instructor for the Siemens Mechatronic Certification Program (SMSCP), he currently serves as a Senior Lecturer at the Oxford Brookes University. His current research focuses on investigating and developing novel techniques to model, control and optimize complex systems. Dr. Azizi's areas of expertise include Control & Automation, Artificial Intelligence and Simulation Techniques. Dr. Azizi is the recipient of the National Research Award of Oman for his AI-focused research, DELL EMC's 'Envision the Future' completion award in IoT for 'Automated Irrigation System', and 'Exceptional Talent' recognition by the British Royal Academy of Engineering.



This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, powerful and easy to implement, in estimating TBM performance parameters. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs.   
Erscheint lt. Verlag 13.3.2021
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo IX, 70 p. 16 illus., 15 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Bauwesen
Technik Maschinenbau
Schlagworte Boring machines • Empirical Models • Intelligent computational techniques • optimization algorithms • predictive models • Statistical Techniques • tunneling
ISBN-10 981-16-1034-7 / 9811610347
ISBN-13 978-981-16-1034-9 / 9789811610349
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
CHF 92,75
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15