Reinforcement Learning Aided Performance Optimization of Feedback Control Systems (eBook)
XIX, 127 Seiten
Springer Fachmedien Wiesbaden (Verlag)
978-3-658-33034-7 (ISBN)
Changsheng Hua proposes two approaches, an input/output recovery approach and a performance index-based approach for robustness and performance optimization of feedback control systems. For their data-driven implementation in deterministic and stochastic systems, the author develops Q-learning and natural actor-critic (NAC) methods, respectively. Their effectiveness has been demonstrated by an experimental study on a brushless direct current motor test rig.
The author:
Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.
Erscheint lt. Verlag | 3.3.2021 |
---|---|
Zusatzinfo | XIX, 127 p. 53 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Schlagworte | Actor-Critic • Fault-tolerant Control • Feedback Control Systems • machine learning • Q-Learning • Robustness Optimization |
ISBN-10 | 3-658-33034-1 / 3658330341 |
ISBN-13 | 978-3-658-33034-7 / 9783658330347 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 4,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich