Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Applied Regression Modeling (eBook)

(Autor)

eBook Download: PDF
2020 | 3. Auflage
336 Seiten
Wiley (Verlag)
978-1-119-61588-0 (ISBN)

Lese- und Medienproben

Applied Regression Modeling -  Iain Pardoe
Systemvoraussetzungen
110,99 inkl. MwSt
(CHF 108,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of Applied Regression Modeling delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices. The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content. Applied Regression Modeling covers a wide variety of topics, like: Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus, Applied Regression Modeling also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Iain Pardoe, PhD, received his PhD in Statistics from the University of Minnesota. He is an Online Instructor of the "Regression Methods" graduate course at Pennsylvania State University. He also teaches "Biostatistics," "Mathematics for Computing Science," and "Mathematics for Teachers" at Thompson Rivers University and was previously an Associate Professor at the University of Oregon.

Preface xi

Acknowledgments xv

Introduction xvii

I.1 Statistics in Practice xvii

I.2 Learning Statistics xix

About the Companion Website xxi

1 Foundations 1

1.1 Identifying and Summarizing Data 2

1.2 Population Distributions 5

1.3 Selecting Individuals at Random--Probability 9

1.4 Random Sampling 11

1.4.1 Central limit theorem--normal version 12

1.4.2 Central limit theorem--t-version 14

1.5 Interval Estimation 16

1.6 Hypothesis Testing 20

1.6.1 The rejection region method 20

1.6.2 The p-value method 23

1.6.3 Hypothesis test errors 27

1.7 Random Errors and Prediction 28

1.8 Chapter Summary 31

Problems 31

2 Simple Linear Regression 39

2.1 Probability Model for X and Y 40

2.2 Least Squares Criterion 45

2.3 Model Evaluation 50

2.3.1 Regression standard error 51

2.3.2 Coefficient of determination--R² 53

2.3.3 Slope parameter 57

2.4 Model Assumptions 65

2.4.1 Checking the model assumptions 66

2.4.2 Testing the model assumptions 72

2.5 Model Interpretation 72

2.6 Estimation and Prediction 74

2.6.1 Confidence interval for the population mean, E(Y) 74

2.6.2 Prediction interval for an individual Y -value 75

2.7 Chapter Summary 79

2.7.1 Review example 80

Problems 83

3 Multiple Linear Regression 95

3.1 Probability Model for (X1, X2, . . .) and Y 96

3.2 Least Squares Criterion 100

3.3 Model Evaluation 106

3.3.1 Regression standard error 106

3.3.2 Coefficient of determination--R² 108

3.3.3 Regression parameters--global usefulness test 115

3.3.4 Regression parameters--nested model test 120

3.3.5 Regression parameters--individual tests 127

3.4 Model Assumptions 137

3.4.1 Checking the model assumptions 137

3.4.2 Testing the model assumptions 143

3.5 Model Interpretation 145

3.6 Estimation and Prediction 146

3.6.1 Confidence interval for the population mean, E(Y ) 147

3.6.2 Prediction interval for an individual Y -value 148

3.7 Chapter Summary 151

Problems 152

4 Regression Model Building I 159

4.1 Transformations 161

4.1.1 Natural logarithm transformation for predictors 161

4.1.2 Polynomial transformation for predictors 167

4.1.3 Reciprocal transformation for predictors 171

4.1.4 Natural logarithm transformation for the response 175

4.1.5 Transformations for the response and predictors 179

4.2 Interactions 184

4.3 Qualitative Predictors 191

4.3.1 Qualitative predictors with two levels 192

4.3.2 Qualitative predictors with three or more levels 201

4.4 Chapter Summary 210

Problems 211

5 Regression Model Building II 221

5.1 Influential Points 223

5.1.1 Outliers 223

5.1.2 Leverage 228

5.1.3 Cook's distance 230

5.2 Regression Pitfalls 234

5.2.1 Nonconstant variance 234

5.2.2 Autocorrelation 237

5.2.3 Multicollinearity 242

5.2.4 Excluding important predictor variables 246

5.2.5 Overfitting 249

5.2.6 Extrapolation 250

5.2.7 Missing data 252

5.2.8 Power and sample size 255

5.3 Model Building Guidelines 256

5.4 Model Selection 259

5.5 Model Interpretation Using Graphics 263

5.6 Chapter Summary 270

Problems 272

Notation and Formulas 287

Univariate Data 287

Simple Linear Regression 288

Multiple Linear Regression 289

Bibliography 293

Glossary 299

Index 305

Erscheint lt. Verlag 24.11.2020
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Business & Management • Business Statistics & Math • Finanz- u. Wirtschaftsstatistik • Regression Analysis • Regressionsanalyse • Statistics • Statistics for Finance, Business & Economics • Statistik • Wirtschaftsmathematik u. -statistik • Wirtschaft u. Management
ISBN-10 1-119-61588-7 / 1119615887
ISBN-13 978-1-119-61588-0 / 9781119615880
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich