Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations -

Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations

Issues and Challenges Towards Full Seismic Risk Analysis
Buch | Softcover
VII, 586 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-65512-9 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book collects several articles from the 2nd workshop BestPSHANI 2018 organized by the IAEA as well as several new contributions. The issue covers topics ranging from the seismological aspects of earthquake source studies, ground motion and fault displacement modeling to the engineering application of simulated ground motion for the analysis of soil structure interaction, structural response and fragility curve analysis for the quantification of seismic vulnerability of structures and their seismic performance. Collectively, the seismological papers discuss several current issues of source characterization and ground motion prediction for SHA, highlighting the usefulness of physics-based models for future applications in practice. The engineering papers describe methodologies to develop integral models from source-to-structures that consider the developments of synthetic seismograms as input for structural response and fragility curves estimation for seismic vulnerability assessment. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA, FDHA and vulnerability analysis of engineering structures for seismic risk.

Introduction.- Computational Tools for Relaxing the Fault Segmentation in Probabilistic Seismic Hazard Modelling in Complex Fault Systems.- Testing Fault Models in Intraplate Settings: A Potential for Challenging the Seismic Hazard Assessment Inputs and Hypothesis.- Gutenberg-Richter's b Value and Earthquake Asperity Models.- Eigenoscillations and Stability of Rocking Stones: The Case Study of ''The Hus Pulpit'' in The Central Bohemian Pluton.- Scaling Relationships of Source Parameters of Inland Crustal Earthquakes in Tectonically Active Regions.- Imaging of Seismogenic Asperities of the 2016 ML 6.0 Amatrice, Central Italy, Earthquake Through Dynamic Rupture Simulations.- Sensitivity of High-Frequency Ground Motion to Kinematic Source Parameters.- Large Stress Release During Normal-Faulting Earthquakes in Western Turkey Supported by Broadband Ground Motion Simulations.- Development of Dynamic Asperity Models to Predict Surface Fault Displacement Caused by Earthquakes.- Probabilistic Evaluation of Off-Fault Displacements of the 2016 Kumamoto Earthquake.- Extension of Characterized Source Model for Long-Period Ground Motions in Near-Fault Area.- Are the Standard VS-Kappa Host-to-Target Adjustments the Only Way to Get Consistent Hard-Rock Ground Motion Prediction?- The Interface Between Empirical and Simulation-Based Ground-Motion Models.- Ground Motion Characterization for Vertical Ground Motions in Turkey-Part 1: V/H Ratio Ground Motion Models.- Ground Motion Characterization for Vertical Ground Motions in Turkey-Part 2: Vertical Ground Motion Models and the Final Logic Tree.- Numerical Simulation of M9 Megathrust Earthquakes in the Cascadia Subduction Zone.- Dynamic Source Model for the 2011 Tohoku Earthquake in a Wide Period Range Combining Slip Reactivation with the Short-Period Ground Motion Generation Process.- Earthquake Cycle Modelling of Multi-segmented Faults: DynamicRupture and Ground Motion Simulation of the 1992 Mw 7.3 Landers Earthquake.- Hybrid Broadband Seismograms for Seismic Shaking Scenarios: An Application to the Po Plain Sedimentary Basin (Northern Italy).- Kinematic Rupture Modeling of Ground Motion from the M7 Kumamoto, Japan Earthquake.- Near-Source Strong Pulses During Two Large MJMA 6.5 and MJMA 7.3 Events in the 2016 Kumamoto, Japan, Earthquakes.- Estimation of Strong Motion Generation Area for the 2004 Parkfield Earthquake Using Empirical Green's Function Method.- Optimization of a Simulation Code Coupling Extended Source (k-2 ) and Empirical Green's Functions: Application to the Case of the Middle Durance Fault.- Empirical Green's Function Simulations Toward Site-Specific Ground Motion Prediction in Vietnam.- ain Achievements of the Multidisciplinary SINAPS@ Research Project: Towards an Integrated Approach to Perform Seismic Safety Analysis of Nuclear Facilities.- Broadband Ground Motion Simulation Within the City of Duzce (Turkey) and Building Response Simulation.- Seismic Fragility Curve Assessment Based on Synthetic Ground Motions with Conditional Spectra.- Influence of Input Motion's Control Point Location in Nonlinear SSI Analysis of Equipment Seismic Fragilities: Case Study on the Kashiwazaki-Kariwa NPP.- Should We Go Ahead with the Response Spectrum?      

Erscheinungsdatum
Reihe/Serie Pageoph Topical Volumes
Zusatzinfo VII, 586 p. 1 illus.
Verlagsort Cham
Sprache englisch
Maße 193 x 260 mm
Gewicht 1242 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Geophysik
Schlagworte broadband ground motion • Dynamic and kinematic source models • Fault displacement • Fragility Curves • near-source ground motion • physics-based fault rupture models • seismic hazard assessments • Seismic risk • Seismic structural response
ISBN-10 3-030-65512-1 / 3030655121
ISBN-13 978-3-030-65512-9 / 9783030655129
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95