Dimension Theory
Springer International Publishing (Verlag)
978-3-030-22234-5 (ISBN)
Accessible to readers familiar with the standard facts of general topology, the book is written in a reader-friendly style suitable for self-study. It contains enough material for one or more graduate courses in dimension theory and/or general topology. More than half of the contents do not appear in existing books, making it also a good reference for libraries and researchers.
- Topological Spaces. - The Three Main Dimension Functions. - The Countable Sum Theorem for Covering Dimension. - Urysohn Inequalities. - The Dimension of Euclidean Spaces. - Connected Components and Dimension. - Factorization and Compactification Theorems for Separable Metric Spaces. - Coincidence, Product and Decomposition Theorems for Separable Metric Spaces. - Universal Spaces for Separable Metric Spaces of Dimension at Most n. - Axiomatic Characterization of the Dimension of Separable Metric Spaces. - Cozero Sets and Covering Dimension dim0. - -Spaces and the Failure of the Sum and Subset Theorems for dim0. - The Inductive Dimension Ind0. - Two Classical Examples. - The Gap Between the Covering and the Inductive Dimensions of Compact Hausdorff Spaces. - Inverse Limits and N-Compact Spaces. - Some Standard Results Concerning Metric Spaces. - The Mardesi´c Factorization Theorem and the Dimension of Metrizable Spaces. - A Metrizable Space with Unequal Inductive Dimensions. - No Finite Sum Theorem for the Small Inductive Dimension of Metrizable Spaces. - Failure of the Subset Theorem for Hereditarily Normal Spaces. - A Zero-Dimensional, Hereditarily Normal and Lindelöf Space Containing Subspaces of Arbitrarily Large Dimension. - Cosmic Spaces and Dimension. - n-Cardinality and Bernstein Sets. - The van Douwen Technique for Constructing Counterexamples. - No Compactification Theorem for the Small Inductive Dimension of Perfectly Normal Spaces. - Normal Products and Dimension. - Fully Closed and Ring-Like Maps. - Fedorcuk's Resolutions. - Compact Spaces Without Intermediate Dimensions. - More Continua with Distinct Covering and Inductive Dimensions. - The Gaps Between the Dimensions of Normal Hausdorff Spaces.
"The monograph contains a great deal of useful and up-to-date material on dimension theory; the exposition is transparent and well organized which makes it possible to use this work both as a textbook of dimension theory and a base of research projects in numerous areas." (Vladimir Tkachuk, zbMATH 1471.54001, 2021)
“The monograph contains a great deal of useful and up-to-date material on dimension theory; the exposition is transparent and well organized which makes it possible to use this work both as a textbook of dimension theory and a base of research projects in numerous areas.” (Vladimir Tkachuk, zbMATH 1471.54001, 2021)
Erscheinungsdatum | 20.10.2020 |
---|---|
Reihe/Serie | Atlantis Studies in Mathematics |
Zusatzinfo | X, 261 p. 1 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 421 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Covering dimension • Dimension Theory • inductive dimension • Lindelof spaces • Metric Spaces • N-compact spaces • normal spaces • perfectly normal spaces • Tychonoff spaces |
ISBN-10 | 3-030-22234-9 / 3030222349 |
ISBN-13 | 978-3-030-22234-5 / 9783030222345 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich