The Architecture of Convnets and Data Processing. Advantages of Convolutional Neural Networks
Seiten
2020
|
20001 A. 1. Auflage
GRIN Verlag
978-3-346-21308-2 (ISBN)
GRIN Verlag
978-3-346-21308-2 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
Essay from the year 2020 in the subject Mathematics - Miscellaneous, grade: 1,3, University of Ulm, language: English, abstract: In the past two decades in particular, artificial neural networks have led to new approaches and processes in machine learning in many areas. They have replaced many existing processes. In some areas, they even exceed human performance. Impressive progress has been made in the area of image recognition and classification. Above all, this includes the introduction of convolutional neural networks (ConvNets). They belong to the class of neural networks. The first ConvNet was developed by LeCun et al. in 1989. ConvNets were especially developed to enhance image processing. Therefore, they provide a unique architecture. Due to their structure and functionality, ConvNets are particularly well suited within this field of application compared to other methods.
Erscheinungsdatum | 08.12.2020 |
---|---|
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 62 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | advantages • Architecture • convnets • convolutional • Data • Networks • Neural • Processing |
ISBN-10 | 3-346-21308-0 / 3346213080 |
ISBN-13 | 978-3-346-21308-2 / 9783346213082 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Gabler (Verlag)
CHF 48,95
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
fundiert, vielseitig, praxisnah
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 46,15