Noise Filtering for Big Data Analytics
Seiten
2022
De Gruyter (Verlag)
978-3-11-069709-4 (ISBN)
De Gruyter (Verlag)
978-3-11-069709-4 (ISBN)
This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.
Souvik Bhattacharyya, Koushik Ghosh, University of Burdwan,West Bengal, India
Erscheinungsdatum | 10.05.2022 |
---|---|
Reihe/Serie | De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences ; 12 |
Zusatzinfo | 75 b/w ill., 12 b/w tbl. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 543 g |
Themenwelt | Mathematik / Informatik ► Informatik |
Schlagworte | Angewandte Mathematik • Big Data • Künstliche Intelligenz • Maschinelles Lernen |
ISBN-10 | 3-11-069709-2 / 3110697092 |
ISBN-13 | 978-3-11-069709-4 / 9783110697094 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
BILDNER Verlag
CHF 55,85
Buch | Softcover (2023)
BILDNER Verlag
CHF 69,85