Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Mixture of expert models. Statistical analysis method (eBook)

eBook Download: PDF
2020 | 1. Auflage
GRIN Verlag
978-3-346-18234-0 (ISBN)

Lese- und Medienproben

Mixture of expert models. Statistical analysis method - Jula Kabeto Bunkure
Systemvoraussetzungen
13,99 inkl. MwSt
(CHF 13,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Document from the year 2020 in the subject Mathematics - Statistics, grade: Book chapter, Bahir Dar University (Ethiopian Institute of Textile and fashion technology), course: Statistical analysis method, language: English, abstract: Mixtures of experts models consist of a set of experts, which model conditional probabilistic processes, and a gate which combines the probabilities of the experts. The probabilistic basis for the mixture of experts is that of a mixture model in which the experts form the input conditional mixture components while the gate outputs form the input conditional mixture weights. A straightforward generalisation of ME models is the hierarchical mixtures of experts (HME) class of models, in which each expert is made up of a mixture of experts in a recursive fashion.

This principle states that complex problems can be better solved by decomposing them into smaller tasks. In mixtures of experts the assumption is that there are separate processes in the underlying process of generating the data. Modelling of these processes is performed by the experts while the decision of which process to use is modelled by the gate.

Mixtures of experts have many connections with other algorithms such as tree-based methods, mixture models and switching regression. In this, I review the paper by Rasmussen and Ghahramani to see how closely the mixtures of experts model resembles these other algorithms, and what is novel about it. The aim of this review is to adopt the method used in the current article to local precipitation data.
Erscheint lt. Verlag 16.6.2020
Verlagsort München
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Mixture • Statistical
ISBN-10 3-346-18234-7 / 3346182347
ISBN-13 978-3-346-18234-0 / 9783346182340
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)
Größe: 812 KB

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
CHF 24,40