Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data Science and Productivity Analytics (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
X, 439 Seiten
Springer International Publishing (Verlag)
978-3-030-43384-0 (ISBN)

Lese- und Medienproben

Data Science and Productivity Analytics -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of 'productivity analysis/data envelopment analysis' and 'data science/big data'. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.

Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubt that nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.

Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis.



Vincent Charles is currently associated with the School of Management, University of Bradford. He has published books with Springer-Verlag, Pearson Education, Cengage, and Cambridge Scholars Publishing, UK. His areas of focus include Performance Measurement and Management (Productivity, Quality, Efficiency, Effectiveness); [Big] Data Science; Competitiveness; Social Progress; Doing Business; Innovation; and Design Thinking.

Juan Aparicio is an Associate Professor at the Department of Statistics, Mathematics an Information Technology of the University Miguel Hernandez, Elche (Alicante), Spain. He is the director of the Center of Operations Research and is also Co-Chair (with Knox Lovell) of the Santander Chair on Efficiency and Productivity. He has published over 100 research contributions, mainly on Data Envelopment Analysis, Efficiency and Productivity Analysis.

Joe Zhu is Professor of Operations Analytics in the Foisie Business School, Worcester Polytechnic Institute. He is an internationally recognized expert in methods of performance evaluation and benchmarking using Data Envelopment Analysis (DEA), and his research interests are in the areas of operations and business analytics, productivity modeling, and performance evaluation and benchmarking. He has published and co-edited several books focusing on performance evaluation and benchmarking using DEA and developed the DEA Frontier software.
Erscheint lt. Verlag 23.5.2020
Reihe/Serie International Series in Operations Research & Management Science
International Series in Operations Research & Management Science
Zusatzinfo X, 439 p. 98 illus., 49 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Wirtschaft Allgemeines / Lexika
Schlagworte Big Data • Combinatory Analytics • Data Envelopment Analysis (DEA) • Data Science • Data Visualization • Efficiency • Multidimensional Scaling • Parametric Analytics • Productivity Analysis
ISBN-10 3-030-43384-6 / 3030433846
ISBN-13 978-3-030-43384-0 / 9783030433840
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich