Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Official Google Cloud Certified Professional Data Engineer Study Guide (eBook)

(Autor)

eBook Download: EPUB
2020
John Wiley & Sons (Verlag)
978-1-119-61845-4 (ISBN)

Lese- und Medienproben

Official Google Cloud Certified Professional Data Engineer Study Guide - Dan Sullivan
Systemvoraussetzungen
39,99 inkl. MwSt
(CHF 38,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The proven Study Guide that prepares you for this new Google Cloud exam

The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. 

Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. 

•    Build and operationalize storage systems, pipelines, and compute infrastructure

•    Understand machine learning models and learn how to select pre-built models

•    Monitor and troubleshoot machine learning models

•    Design analytics and machine learning applications that are secure, scalable, and highly available. 

This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.



DAN SULLIVAN is a software architect specializing in data architecture, machine learning, and cloud computing. Dan is a Google Cloud Certified Professional Data Engineer, Professional Architect, and Associate Cloud Engineer. Dan is the author of six books and numerous articles. He is an instructor with LinkedIn Learning and Udemy for Business.

DAN SULLIVAN is a software architect specializing in data architecture, machine learning, and cloud computing. Dan is a Google Cloud Certified Professional Data Engineer, Professional Architect, and Associate Cloud Engineer. Dan is the author of six books and numerous articles. He is an instructor with LinkedIn Learning and Udemy for Business.

Introduction


The Google Cloud Certified Professional Data Engineer exam tests your ability to design, deploy, monitor, and adapt services and infrastructure for data-driven decision-making. The four primary areas of focus in this exam are as follows:

  • Designing data processing systems
  • Building and operationalizing data processing systems
  • Operationalizing machine learning models
  • Ensuring solution quality

Designing data processing systems involves selecting storage technologies, including relational, analytical, document, and wide-column databases, such as Cloud SQL, BigQuery, Cloud Firestore, and Cloud Bigtable, respectively. You will also be tested on designing pipelines using services such as Cloud Dataflow, Cloud Dataproc, Cloud Pub/Sub, and Cloud Composer. The exam will test your ability to design distributed systems that may include hybrid clouds, message brokers, middleware, and serverless functions. Expect to see questions on migrating data warehouses from on-premises infrastructure to the cloud.

The building and operationalizing data processing systems parts of the exam will test your ability to support storage systems, pipelines, and infrastructure in a production environment. This will include using managed services for storage as well as batch and stream processing. It will also cover common operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. As a data engineer, you are expected to understand how to provision resources, monitor pipelines, and test distributed systems.

Machine learning is an increasingly important topic. This exam will test your knowledge of prebuilt machine learning models available in GCP as well as the ability to deploy machine learning pipelines with custom-built models. You can expect to see questions about machine learning service APIs and data ingestion, as well as training and evaluating models. The exam uses machine learning terminology, so it is important to understand the nomenclature, especially terms such as model, supervised and unsupervised learning, regression, classification, and evaluation metrics.

The fourth domain of knowledge covered in the exam is ensuring solution quality, which includes security, scalability, efficiency, and reliability. Expect questions on ensuring privacy with data loss prevention techniques, encryption, identity, and access management, as well ones about compliance with major regulations. The exam also tests a data engineer’s ability to monitor pipelines with Stackdriver, improve data models, and scale resources as needed. You may also encounter questions that assess your ability to design portable solutions and plan for future business requirements.

In your day-to-day experience with GCP, you may spend more time working on some data engineering tasks than others. This is expected. It does, however, mean that you should be aware of the exam topics about which you may be less familiar. Machine learning questions can be especially challenging to data engineers who work primarily on ingestion and storage systems. Similarly, those who spend a majority of their time developing machine learning models may need to invest more time studying schema modeling for NoSQL databases and designing fault-tolerant distributed systems.

What Does This Book Cover?


This book covers the topics outlined in the Google Cloud Professional Data Engineer exam guide available here:

cloud.google.com/certification/guides/data-engineer

Chapter 1: Selecting Appropriate Storage Technologies  This chapter covers selecting appropriate storage technologies, including mapping business requirements to storage systems; understanding the distinction between structured, semi-structured, and unstructured data models; and designing schemas for relational and NoSQL databases. By the end of the chapter, you should understand the various criteria that data engineers consider when choosing a storage technology.

Chapter 2: Building and Operationalizing Storage Systems  This chapter discusses how to deploy storage systems and perform data management operations, such as importing and exporting data, configuring access controls, and doing performance tuning. The services included in this chapter are as follows: Cloud SQL, Cloud Spanner, Cloud Bigtable, Cloud Firestore, BigQuery, Cloud Memorystore, and Cloud Storage. The chapter also includes a discussion of working with unmanaged databases, understanding storage costs and performance, and performing data lifecycle management.

Chapter 3: Designing Data Pipelines  This chapter describes high-level design patterns, along with some variations on those patterns, for data pipelines. It also reviews how GCP services like Cloud Dataflow, Cloud Dataproc, Cloud Pub/Sub, and Cloud Composer are used to implement data pipelines. It also covers migrating data pipelines from an on-premises Hadoop cluster to GCP.

Chapter 4: Designing a Data Processing Solution  In this chapter, you learn about designing infrastructure for data engineering and machine learning, including how to do several tasks, such as choosing an appropriate compute service for your use case; designing for scalability, reliability, availability, and maintainability; using hybrid and edge computing architecture patterns and processing models; and migrating a data warehouse from on-premises data centers to GCP.

Chapter 5: Building and Operationalizing Processing Infrastructure  This chapter discusses managed processing resources, including those offered by App Engine, Cloud Functions, and Cloud Dataflow. The chapter also includes a discussion of how to use Stackdriver Metrics, Stackdriver Logging, and Stackdriver Trace to monitor processing infrastructure.

Chapter 6: Designing for Security and Compliance  This chapter introduces several key topics of security and compliance, including identity and access management, data security, encryption and key management, data loss prevention, and compliance.

Chapter 7: Designing Databases for Reliability, Scalability, and Availability  This chapter provides information on designing for reliability, scalability, and availability of three GPC databases: Cloud Bigtable, Cloud Spanner, and Cloud BigQuery. It also covers how to apply best practices for designing schemas, querying data, and taking advantage of the physical design properties of each database.

Chapter 8: Understanding Data Operations for Flexibility and Portability  This chapter describes how to use the Data Catalog, a metadata management service supporting the discovery and management of data in Google Cloud. It also introduces Cloud Dataprep, a preprocessing tool for transforming and enriching data, as well as Data Studio for visualizing data and Cloud Datalab for interactive exploration and scripting.

Chapter 9: Deploying Machine Learning Pipelines  Machine learning pipelines include several stages that begin with data ingestion and preparation and then perform data segregation followed by model training and evaluation. GCP provides multiple ways to implement machine learning pipelines. This chapter describes how to deploy ML pipelines using general-purpose computing resources, such as Compute Engine and Kubernetes Engine. Managed services, such as Cloud Dataflow and Cloud Dataproc, are also available, as well as specialized machine learning services, such as AI Platform, formerly known as Cloud ML.

Chapter 10: Choosing Training and Serving Infrastructure  This chapter focuses on choosing the appropriate training and serving infrastructure for your needs when serverless or specialized AI services are not a good fit for your requirements. It discusses distributed and single-machine infrastructure, the use of edge computing for serving machine learning models, and the use of hardware accelerators.

Chapter 11: Measuring, Monitoring, and Troubleshooting Machine Learning Models  This chapter focuses on key concepts in machine learning, including machine learning terminology and core concepts and common sources of error in machine learning. Machine learning is a broad discipline with many areas of specialization. This chapter provides you with a high-level overview to help you pass the Professional Data Engineer exam, but it is not a substitute for learning machine learning from resources designed for that purpose.

Chapter 12: Leveraging Prebuilt ML Models as a Service  This chapter describes Google Cloud Platform options for using pretrained machine learning models to help developers build and deploy intelligent services quickly. The services are broadly grouped into sight, conversation, language, and structured data. These services are available through APIs or through Cloud AutoML services.

Interactive Online Learning Environment and TestBank


Learning the material in the Official Google Cloud Certified Professional Engineer Study Guide is an important part of preparing for the Professional Data Engineer certification exam, but we also provide additional tools to help you prepare. The online TestBank will help you understand the types of questions that will appear on the certification exam.

The sample tests in the TestBank include all the questions in each chapter as well as the questions from the assessment test. In addition, there are two practice exams with 50 questions...

Erscheint lt. Verlag 11.5.2020
Sprache englisch
Themenwelt Schulbuch / Wörterbuch
Mathematik / Informatik Informatik Netzwerke
Medizin / Pharmazie Studium
Sozialwissenschaften Pädagogik Erwachsenenbildung
Schlagworte Google • Google Cloud • Google Cloud certification • Google Cloud exam • Google Cloud Platform • Misc (other) certifications • prepare for Good Cloud exam • Prüfungsvorbereitung • Sonstige Zertifizierungen • Sybex study guide • Test Prep • test prep for the Google Cloud Exam • The Cloud • Zertifizierung
ISBN-10 1-119-61845-2 / 1119618452
ISBN-13 978-1-119-61845-4 / 9781119618454
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 3,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Martin Linten; Axel Schemberg; Kai Surendorf

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 20,45
das Praxisbuch für Administratoren und DevOps-Teams

von Michael Kofler

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 27,25