IoT Machine Learning Applications in Telecom, Energy, and Agriculture (eBook)
XV, 278 Seiten
Apress (Verlag)
978-1-4842-5549-0 (ISBN)
Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python.
The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains.
After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python.
What You Will Learn
- Implement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with Python
- Set up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenarios
- Develop solutions for commercial-grade IoT or IIoT projects
- Implement case studies in machine learning with IoT from scratch
Who This Book Is For
Raspberry Pi and Arduino enthusiasts and data science and machine learning professionals.
Puneet Mathur is an author, AI consultant, and speaker who has over 20 years of corporate IT industry experience. He has risen from being a programmer to a third line manager working with multinationals such as HP, IBM, and Dell at various levels. For several years he has been working as an AI consultant through his company Boolbrite International for clients around the globe, by guiding and mentoring client teams stuck with AI and machine learning problems. He also conducts leadership and motivational workshops, and AI-based hands-on corporate workshops. His latest bestselling book, Machine Learning Applications using Python (Apress, 2018), is for machine learning professionals who want to advance their career by gaining experiential knowledge from an AI expert. His other books include The Predictive Program Manager, Prediction Secrets, and Good Money Bad Money.
Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python. The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains. After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python. What You Will LearnImplement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with PythonSet up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenariosDevelop solutions for commercial-grade IoT or IIoT projectsImplement case studies in machine learning with IoT from scratchWho This Book Is ForRaspberry Pi and Arduino enthusiasts and data science and machine learning professionals.
Erscheint lt. Verlag | 9.5.2020 |
---|---|
Zusatzinfo | XV, 278 p. 105 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Informatik ► Weitere Themen ► Hardware | |
Schlagworte | Arduino Mega • Cloud Computing • IOT • machine learning • Python • Raspberry Pi • Telecom |
ISBN-10 | 1-4842-5549-6 / 1484255496 |
ISBN-13 | 978-1-4842-5549-0 / 9781484255490 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich