Multi-Composed Programming with Applications to Facility Location
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-30579-6 (ISBN)
Oleg Wilfer presents a new conjugate duality concept for geometric and cone constrained optimization problems whose objective functions are a composition of finitely many functions. As an application, the author derives results for single minmax location problems formulated by means of extended perturbed minimal time functions as well as for multi-facility minmax location problems defined by gauges. In addition, he provides formulae of projections onto the epigraphs of gauges to solve these kinds of location problems numerically by using parallel splitting algorithms. Numerical comparisons of recent methods show the excellent performance of the proposed solving technique.
About the Author:Dr. Oleg Wilfer received his PhD at the Faculty of Mathematics of Chemnitz University of Technology, Germany. He is currently working as a development engineer in the automotive industry.
Dr. Oleg Wilfer received his PhD at the Faculty of Mathematics of Chemnitz University of Technology, Germany. He is currently working as a development engineer in the automotive industry.
Lagrange Duality for Multi-Composed Optimization Problems.- Duality Results for Minmax Location Problems.- Solving Minmax Location Problems via Epigraphical Projection.- Numerical Experiments.
Erscheinungsdatum | 29.05.2020 |
---|---|
Reihe/Serie | Mathematische Optimierung und Wirtschaftsmathematik |
Zusatzinfo | XIX, 192 p. 13 illus. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 281 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | Apollonius problem • Conjugate Duality • epigraphical projection • gauge function • Lagrange duality • minimal time function • minimax location problem • Minkowski functional • minmax location problem • multi-composed programming • Optimality conditions • projection operators • proximal point algorithm • Regularity Conditions • strong duality • Sylvester problem |
ISBN-10 | 3-658-30579-7 / 3658305797 |
ISBN-13 | 978-3-658-30579-6 / 9783658305796 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich