Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Analytical Methods in Statistics -

Analytical Methods in Statistics

AMISTAT, Liberec, Czech Republic, September 2019
Buch | Hardcover
X, 156 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-48813-0 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.


Matús Maciak is an Assistant Professor at the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. His research interests include innovative statistical approaches concerning nonparametric and semiparametric regression models, sparse fitting via convex optimization (atomic pursuit / LASSO), estimation under various shape constraints, robustness and quantiles, and changepoint detection and estimation within various data structures. He also has practical experience in applied statistics, especially in empirical econometrics and finance, insurance, ecology, and the medical sciences. Michal Pesta is an Associate Professor at the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. His research interests include asymptotic methods for changepoint, weak dependence, copulae, resampling methods, panel data, nonparametric regression, and errors-in-variables modeling. He is also interested in developing complex statistical methodology frameworks for various real-life settings, including empirical econometrics, finance, and non-life insurance. Martin Schindler is an Assistant Professor of Applied Mathematics at the Technical University of Liberec, Czech Republic. His research interests include robust and nonparametric statistics, statistical computing and simulations. He has also worked on various inference procedures based on regression rank scores used in both linear and nonlinear models. During his postdoctoral studies at the University of Tampere he worked on nonparametric procedures for microarray data.

Preface.- Y. Güney, J. Jurecková and O. Arslan, Averaged Autoregression Quantiles in Autoregressive Model.- J. Kalina and P. Vidnerová, Regression Neural Networks with a Highly Robust Loss Function.- H. L. Koul and P. Geng, Weighted Empirical Minimum Distance Estimators in Berkson Measurement Error Regression Models.- M. Maciak, M. Pesta and S. Vitali, Implied Volatility Surface Estimation via Quantile Regularization.- I. Mizera, A remark on the Grenander estimator.- U. Radojicic and K. Nordhausen, Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace.- P. Vidnerová, J. Kalina and Y. Güney, A Comparison of Robust Model Choice Criteria within a Metalearning Study.- S. Zwanzig and R. Ahmad, On Parameter Estimation for High Dimensional Errors-in-Variables Models.

Erscheinungsdatum
Reihe/Serie Springer Proceedings in Mathematics & Statistics
Zusatzinfo X, 156 p. 15 illus., 8 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 409 g
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte 62B05, 62C12, 62F03, 62F12, 62F35, 62F40, 62G08, 6 • 62B05, 62C12, 62F03, 62F12, 62F35, 62F40, 62G08, 62G20 • Analytical Methods • asymptotics • (auto)regression • estimation • Fisher Information • hypothesis testing • meta learning • Neural networks • Robustness • Statistical Methods • stochastic inequalities • stochastic models
ISBN-10 3-030-48813-6 / 3030488136
ISBN-13 978-3-030-48813-0 / 9783030488130
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 69,95
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 41,90