Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Manifolds and Lie Groups -

Manifolds and Lie Groups

Papers in Honor of Yozô Matsushima
Buch | Hardcover
463 Seiten
1981 | 1981 ed.
Birkhauser Boston Inc (Verlag)
978-0-8176-3053-9 (ISBN)
CHF 119,75 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken

On Some Generalization of B. Kostant’s Partition Function.- Stable Real Cohomology of Arithmetic Groups II.- Vector Fields and Cohomology of G/B.- A Simple Proof of Frobenius Theorem.- On Flat Surfaces in S31 and H31.- The Complex Laplace-Beltrami Operator Canonically Associated to a Polarized Abelian Variety.- On the Orders of the Automorphism Groups of Certain Projective Manifolds.- Homogeneous Spaces from a Complex Analytic Viewpoint.- On Lie Algebras Generated by Two Differential Operators.- Conformally-Flatness and Static Space-Time.- Holomorphic Structures Modeled After Compact Hermitian Symmetric Spaces.- Group Cohomology and Hecke Operators.- On Poisson Brackets of Semi-Invariants.- Some Stabilities of Group Automorphisms.- A Note on Cohomology Groups of Holomorphic Line Bundles over a Complex Torus.- Periodic Points on Nilmanifolds.- Isogenies and Congruence Subgroups.- On Compact Einstein Kähler Manifolds with Abundant Holomorphic Transformations.- Special Values of Zeta Functions Associated with Self-Dual Homogeneous Cones.- Hessian Manifolds and Convexity.- Intrinsic Characterization of Affine Algebraic Cones.- The Tannaka Duality Theorem for Semisimple Lie Groups and the Unitarian Trick.- Parallel Submanifolds of Space Forms.- On Hessian Structures on an Affine Manifold.

Reihe/Serie Progress in Mathematics ; 14
Zusatzinfo XII, 463 p.
Verlagsort Secaucus
Sprache englisch
Gewicht 770 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8176-3053-8 / 0817630538
ISBN-13 978-0-8176-3053-9 / 9780817630539
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich